[ 1 ] 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215.
Sun Jun, Tan Wenjun, Mao Hanping, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215.
[ 2 ] 王艳玲, 张宏立, 刘庆飞, 等. 基于迁移学习的番茄叶片病害图像分类[J]. 中国农业大学学报, 2019, 24(6): 124-130.
[ 3 ] 韩旭, 赵春江, 吴华瑞, 等. 基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法[J]. 农业工程学报, 2021, 37(17): 177-188.
Han Xu, Zhao Chunjiang, Wu Huarui, et al. Image classification method for tomato leaf deficient nutrient elements based on attention mechanism and multi‑scale feature fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 177-188.
[ 4 ] 刘阳, 高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报, 2021, 37(2): 187-195.
Liu Yang, Gao Guoqin. Identification of multiple leaf diseases using improved SqueezeNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 187-195.
[ 5 ] Pandian J A, Kumar V D, Geman O, et al. Plant disease detection using deep convolutional neural network [J]. Applied Sciences, 2022, 12(14): 6982.
[ 6 ] Wang Haiqing, Shang Shuqi, Wang Dongwei, et al. Plant disease detection and classification method based on the optimized lightweight YOLOv5 model [J]. Agriculture, 2022, 12(7): 931.
[ 7 ] Narmadha R P, Sengottaiyan N, Kavitha R J. Deep transfer learning based rice plant disease detection model [J]. Intelligent Automation & Soft Computing, 2022, 31(2): 1257-1271.
[ 8 ] 张海涛. 绿豆响应变灰尾孢菌侵染的防卫酶活性变化及抗性基因表达模式分析[D]. 大庆: 黑龙江八一农垦大学, 2017.
[ 9 ] Hu Jie, Shen Li, Albanie Samuel, et al. Squeeze‑and‑excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(8): 1.
[10] Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design [C]. 2021 IEEE Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[11] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|