[1] 郑锁林, 刘晓玲, 杨晓霞. 苹果果实不套袋栽培对果实品质发育特征的影响探讨[J]. 特种经济动植物, 2020, 23(1): 41-42.
[2] Fu L, Majeed Y, et al. Faster R-CNNbased apple detection in dense foliage fruitingwall trees using RGB and depth features for robotic harvesting [J]. Biosystems Engineering, 2020, 197: 245-256.
[3] 马巧荣, 张开祥, 徐福利. 苹果套袋与免套袋栽培比较分析[J]. 安徽农学通报, 2021, 27(21): 69-70, 95.
[4] Barth R, Hemming J, van Henten E J. Design of an eyeinhand sensing and servo control framework for harvesting robotics in dense vegetation [J]. Biosystems Engineering, 2016, 146: 71-84.
[5] 郑元刚. 苹果图像识别的深度神经网络算法研究[J]. 信息化建设, 2019(8): 59-60.
[6] 李昊, 刘海隆, 刘生龙. 基于深度学习的柑橘病虫害动态识别系统研发[J]. 中国农机化学报, 2021, 42(9): 195-201.
Li Hao, Liu Hailong, Liu Shenglong. Research on dynamic identification system for citrus diseases and pests based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2018, 8(10): 31-34.
[7] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLOV3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[8] Sun S, Jiang M, He D, et al. Recognition of green apples in an orchard environment by combining the grabcut model and Ncut algorithm [J]. Biosystems Engineering, 2019, 187: 201-213.
[9] Gan H, Lee W S, Alchanatis V, et al. Immature green citrus fruit detection using color and thermal images [J]. Computers and Electronics in Agriculture, 2018, 152: 117-125.
[10] ApoloApolo O E, MartínezGuanter J, Egea G, et al. Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV [J]. European Journal of Agronomy, 2020, 115: 126030.
[11] 张恩宇, 成云玲, 胡广锐, 等. 基于SSD算法的自然条件下青苹果识别[J]. 中国科技论文, 2020, 15(3): 274-281.Zhang Enyu, Cheng Yunling, Hu Guangrui, et al. Recognition of green apple in natural scenes based on SSD algorithm [J]. China Sciencepaper, 2020,15(3):274-281.
[12] 李大华, 包学娟, 于晓, 等. 基于YOLOv3网络的自然环境下青苹果检测与识别[J]. 激光杂志, 2021, 42(1): 71-77.Li Dahua, Bao Xuejuan. Yu Xiao, et al. Detection and recognition of green apple in natural environment based on YOLOv3 network [J]. Laser Journal, 2021, 42(1): 71-77.
[13] Zheng C, Chen P, Pang J, et al. A mango picking vision algorithm on instance segmentation and key point detection from RGB images in an open orchard [J]. Biosystems Engineering, 2021, 206: 32-54.
[14] 熊俊涛, 刘振, 汤林越, 等. 自然环境下绿色柑橘视觉检测技术研究[J]. 农业机械学报, 2018, 49(4): 45-52.Xiong Juntao, Liu Zhen, Tang Linyue, et al. Visual detection technology of green citrus under natural environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 45-52.
[15] Yu L, Xiong J, Fang X, et al. A litchi fruit recognition method in a natural environment using RGB-D images [J]. Biosystems Engineering, 2021, 204: 50-63.
[16] 刘天真, 滕桂法, 苑迎春, 等. 基于改进YOLOv3的自然场景下冬枣果实识别方法[J]. 农业机械学报, 2021, 52(5): 17-25.Liu Tianzhen, Teng Guifa, Yuan Yingchun, et al. Winter jujube fruit recognition method based on improved YOLOv3 under natural scene [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 17-25.
[17] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. Arxiv Preprint Arxiv: 1804.02767, 2018.
|