[1] Sankaran S, Mishra A, Ehsani R, et al. A review of advanced techniques for detecting plant diseases [J]. Computers and Electronics in Agriculture, 2010, 72(1): 1-13.
[2] 张建华, 陈申宽, 张晓振, 等. 人工智能技术在植物叶片病虫害识别中的研究进展[J]. 种子科技, 2023, 41(16): 124-126.
[3] Abade A, Ferreira P A,Vidal F D B. Plant diseases recognition on images using convolutional neural networks: A systematic review [J]. Computers and Electronics in Agriculture, 2021, 185: 106125.
[4] Zeng H, Bai Y, Wei Y, et al. Phytomelatonin as a central molecule in plant disease resistance [J]. Journal of Experimental Botany, 2022, 73(17): 5874-5885.
[5] Kourelis J, Marchal C, Posbeyikian A, et al. NLR immune receptornanobody fusions confer plant disease resistance [J]. Science, 2023, 379: 934-939.
[6] Li H, Yoshida S, Mitani N, et al. Disease resistance and growth promotion activities of chitin/cellulose nanofiber from spent mushroom substrate to plant [J]. Carbohydrate Polymers, 2022, 284: 119233.
[7] 邵明月, 张建华, 冯全, 等. 深度学习在植物叶部病害检测与识别的研究进展[J]. 智慧农业(中英文), 2022, 4(1): 29-46.
Shao Mingyue, Zhang Jianhua, Feng Quan, et al. Research progress of deep learning in detection and recognition of plant leaf diseases [J]. Smart Agriculture, 2022, 4(1): 29-46.
[8] Du L, Sun Y, Chen S, et al. A novel object detection model based on Faster RCNN for spodoptera frugiperda according to feeding trace of corn leaves [J]. Agriculture, 2022, 12(2): 248.
[9] Wu K, Zhang J, Yin X, et al. An improved YOLO model for detecting trees suffering from pine wilt disease at different stages of infection [J]. Remote Sensing Letters, 2023, 14(2): 114-123.
[10] 杨文姬, 胡文超, 赵应丁, 等. 基于改进Yolov5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115.
Yang Wenji, Hu Wenchao, Zhao Yingding, et al. Research on plant disease detection algorithm based on improved Yolov5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 108-115.
[11] 赵越, 赵辉, 姜永成, 等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报, 2022, 43(10): 183-189.
Zhao Yue, Zhao Hui, Jiang Yongcheng, et al. Detection method of potato leaf diseases based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 183-189.
[12] 曾晏林, 贺壹婷, 蔺瑶, 等. 基于BCE-YOLOv5的苹果叶部病害检测方法[J]. 江苏农业科学, 2023, 51(15): 155-163.
[13] 李大湘, 滑翠云, 刘颖. 面向苹果叶部病害识别的细粒度蒸馏模型[J]. 农业工程学报, 2023, 39(7): 185-194.
Li Daxiang, Hua Cuiyun, Liu Ying. Identifying apple leaf disease using a finegrained distillation model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(7): 185-194.
[14] 贾兆红, 张袁源, 王海涛, 等. 基于Res2Net和双线性注意力的番茄病害时期识别方法[J]. 农业机械学报, 2022, 53(7): 259-266.
Jia Zhaohong, Zhang Yuanyuan, Wang Haitao, et al. Identification method of tomato disease period based on Res2Net and bilinear attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 259-266.
[15] Mohanty S P, Hughes D P, Salathé M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 215232.
[16] Zhu R, Hao F, Ma D. Research on polygon pestinfected leaf region detection based on YOLOv8 [J]. Agriculture, 2023, 13(12): 2253.
[17] Inui A, Mifune Y, Nishimoto H, et al. Detection of elbow OCD in the ultrasound image by artificial intelligence using YOLOv8 [J]. Applied Sciences, 2023, 13(13): 7623.
[18] Albahli S, Nawaz M. DCNet: DenseNet77based CornerNet model for the tomato plant leaf disease detection and classification [J]. Frontiers in Plant Science, 2022, 13: 957961.
[19] Li Y, Li S, Du H, et al. YOLOACN: Focusing on small target and occluded object detection [J]. IEEE Access, 2020, 8: 227288-227303.
[20] Roy A M, Bhaduri J. A deep learning enabled multiclass plant disease detection model based on computer vision [J]. AI, 2021, 2(3): 413-428.
|