[1] 林建吾, 张欣, 陈孝玉龙, 等. 基于轻量化卷积神经网络的番茄病害图像识别[J]. 无线电工程, 2022(8): 1-11.
Lin Jianwu, Zhang Xin, Chen Xiaoyulong, et al. Tomato disease image recognition based on lightweight Convolutional Neural Network [J]. Radio Engineering, 2022(8): 1-11.
[2] 谢传奇, 何勇. 利用光谱反射特性对番茄叶片早疫病害程度的识别[J]. 中国科技论文, 2017, 12(6): 671-675.
Xie Chuanqi, He Yong. Identification of early blight disease degree of tomato leaf using spectral reflectance [J].China Sciencepaper, 2017, 12(6): 671-675.
[3] 孔汶汶, 虞佳佳, 刘飞, 等. 基于高光谱成像技术的番茄茎秆灰霉病早期诊断研究[J]. 光谱学与光谱分析, 2013, 33(3): 733-736.
Kong Wenen, Yu Jiajia, Liu Fei, et al. Early diagnosis of gray mold on tomato stalks based on Hyperspectral data [J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 733-736.
[4] 瞿华香, 赵萍, 陈桂鹏, 等. 基于无线传感器网络的精准农业研究进展[J]. 中国农学通报, 2014, 30(33): 268-272.
Zhai Huaxiang, Zhao Ping, Chen Guipeng, et al. Advances in precision agriculturebased wireless sensor networks [J]. Chinese Agricultural Science Bulletin, 2014, 30(33): 268-272.
[5] 杨英茹, 黄媛, 高欣娜, 等. 基于Logistic回归模型的设施番茄病毒病预警模型构建[J]. 河北农业科学, 2019, 23(5): 91-94.
Yang Yingru, Huang Yuan, Gao Xinna, et al. Early warning model construction of greenhouse tomato virus disease based on Logitic regression model [J]. Journal of Hebei Agricultural Sciences, 2019, 23(5): 91-94.
[6] 陈杰, 杨银娟, 严宝华, 等. 番茄黄化曲叶病毒病预警模型的建立[J]. 中国植保导刊, 2017, 37(3): 49-52.
Chen Jie, Yang Yinjuan, Yan Baohua, et al. Establishment of early warning model for tomato yellow leaf curl virus disease [J]. China Plant Protection, 2017, 37(3): 49-52.
[7] 王晓蓉, 吕雄杰, 贾宝红. 基于物联网技术的日光温室黄瓜白粉病预警系统研究[J]. 农学学报, 2016, 6(8): 50-53.
Wang Xiaorong, Lü Xiongjie, Jia Baohong. Construction of cucumber powdery mildew early warning system in solar greenhouse based on internet of things [J]. Journal of Agriculture, 2016, 6(8): 50-53.
[8] 曹跃腾, 朱学岩, 赵燕东, 等. 基于改进ResNet的植物叶片病虫害识别[J]. 中国农机化学报, 2021, 42(12): 175-181.
Cao Yueteng, Zhu Xueyan, Zhao Yandong, et al. Recognition of plant leaf diseases, insect, and pests based on improved ResNet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 175-181.
[9] 〖ZK(〗He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.〖ZK)〗[9] Xu Y, Zhao B, Zhai Y, et al. Maize diseases identification method based on multiscale convolutional global pooling neural network [J]. IEEE Access, 2021, 9: 27959-27970.
[11] 〖ZK(〗Pham T N, Van Tran L, Dao S V T. Early disease classification of mango leaves using feedforward neural network and hybrid metaheuristic feature selection [J]. IEEE Access, 2020, 8: 189960-189973.〖ZK)〗[12] 〖ZK(〗〖JP3〗鲍文霞, 黄雪峰, 胡根生, 等. 基于改进卷积神经网络模型的玉米叶部病害识别[J]. 农业工程学报, 2021, 37(6): 160-167.〖JP〗〖JP2〗Bao Wenxia, Huang Xuefeng, Hu Gensheng, et al. Identification of maize leaf diseases using improved convolutional neural network [J].Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 160-167.〖JP〗〖ZK)〗[10] 李书琴, 陈聪, 朱彤, 等. 基于轻量级残差网络的植物叶片病害识别[J]. 农业机械学报, 2022, 53(3): 243-250.
Li Shuqin, Chen Cong, Zhu Tong, et al. Plant leaf disease identification based on lightweight residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 243-250.
[11] 郝菁, 贾宗维. 基于图像识别的苹果叶片病害识别模型对比研究[J]. 中国农学通报, 2022, 38(12): 153-158.
Hao Jing, Jia Zongwei. Comparative study on apple leaf disease recognition models based on image recognition [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 153-158.
[12] 孟亮, 郭小燕, 杜佳举, 等. 一种轻量级CNN农作物病害图像识别模型[J]. 江苏农业学报, 2021, 37(5): 1143-1150.
Meng Liang, Guo Xiaoyan, Du Jiaju, et al. A lightweight CNN model for image recognition of crop disease [J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(5): 1143-1150.
[13] 周宏威, 沈恒宇, 袁新佩, 等. 基于迁移学习的苹果树叶片病虫害识别方法研究[J]. 中国农机化学报, 2021, 42(11): 151-158.
Zhou Hongwei, Chen Hengyu, Yuan Xinpei, et al. Research on identification method of apple leaf diseases based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 151-158.
[14] 李庆盛, 缪楠, 张鑫, 等. 基于注意力机制非对称残差网络和迁移学习的玉米病害图像识别[J]. 科学技术与工程, 2021, 21(15): 6249-6256.
Li Qingsheng, Miao Nan, Zhang Xin, et al. Image recognition of maize disease based on asymmetric convolutional attention residual network and transfer learning [J]. Science Technology and Engineering, 2021, 21(15): 6249-6256.
[15] 陆雅诺, 陈炳才. 基于注意力机制的小样本啤酒花病虫害识别[J]. 中国农机化学报, 2021, 42(3): 189-196.
|