[1]
曹乐平. 基于机器视觉的植物病虫害实时识别方法[J]. 中国农学通报, 2015, 31(20): 244-249.
Cao Leping. The research progress on machine recognition of plant diseases and insect pests [J]. Chinese Agricultural Science Bulletin, 2015, 31(20): 244-249.
[2]
Gandhi R, Nimbalkar S, Yelamanchili N, et al. Plant disease detection using CNNs and GANs as an augmentative approach [C]. 2018 IEEE International Conference on Innovative Research and Development (ICIRD). IEEE, 2018: 1-5.
[3]
Bernardo E N. Adoption of the integrated pest management (IPM) approach in crop protection: A researchers view [J]. Philippine Entomologist, 1993, 9(2): 175-185.
[4]
Wang J, Li Y, Feng H, et al. Common pests image recognition based on deep convolutional neural network [J]. Computers and Electronics in Agriculture, 2020, 179: 105834.
[5]
王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人蔬果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.
Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 156-163.
[6]
陆雅诺, 陈炳才. 基于注意力机制的小样本啤酒花病虫害识别[J]. 中国农机化学报, 2021, 42(3): 189-196.
Lu Yanuo, Chen Bingcai. Identification of hops pests and diseases in small samples based on attentional mechanisms [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 189-196.
[7]
蒲秀夫, 宁芊, 雷印杰, 等. 基于二值化卷积神经网络的农业病虫害识别[J]. 中国农机化学报, 2020, 41(2): 177-182.
Pu Xiufu, Ning Qian, Lei Yinjie, et al. Identification of agricultural plant diseases based on binarized convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 177-182.
[8]
闫建伟, 赵源, 张乐伟, 等. 基于残差网络的自然环境中刺梨果实的识别[J]. 中国农机化学报, 2020, 41(10): 191-196.
Yan Jianwei, Zhao Yuan, Zhang Lewei, et al. Recognition of Rosa raxbunghii fruit in natural environment based on residual network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10): 191-196.
[9]
项小东, 翟蔚, 黄言态, 等. 基于XceptionCEMs神经网络的植物病害识别[J]. 中国农机化学报, 2021, 42(8): 177-186.
Xiang Xiaodong, Zhai Wei, Huang Yantai, et al. Plant disease recognition based on Xception CEMs neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 177-186.
[10]
Zhang X, Qiao Y, Meng F, et al. Identification of maize leaf diseases using improved deep convolutional neural networks [J]. IEEE Access, 2018, 6: 30370-30377.
[11]
Mique Jr E L, Palaoag T D. Rice pest and disease detection using convolutional neural network [C]. Proceedings of the 2018 International Conference on Information Science and System, 2018: 147-151.
[12]
曹乐平, 温芝元, 沈陆明. 基于色调分形维数的柑橘糖度和有效酸度检测[J]. 农业机械学报, 2010, 41(3): 143-148.
Cao Leping, Wen Zhiyuan, Shen Luming. Sugar content and the valid acidity test of the citrus based on the fractal dimensions of hue [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(3): 143-148.
[13]
Khan M A, Akram T, Sharif M, et al. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features [J]. Computers and Electronics in Agriculture, 2018, 155: 220-236.
[14]
Liu Z, Gao J, Yang G, et al. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network [J]. Scientific Reports, 2016, 6(1): 1-12.
[15]
Lu Y, Yi S, Zeng N, et al. Identification of rice diseases using deep convolutional neural networks [J]. Neurocomputing, 2017, 267: 378-384.
[16]
Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [J]. arXiv preprint arXiv: 1706.05587, 2017.
[17]
Shi Z, Shi M, Lin W. The implementation of crawling news page based on incremental web crawler [C]. 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science & Engineering (ACIT-CSII-BCD). IEEE, 2016: 348-351.
[18]
Inoue H. Data augmentation by pairing samples for images classification [J]. arXiv preprint arXiv:1801.02929, 2018.
[19]
Sun Y, Tian Y, Xu Y. Problems of encoderdecoder frameworks for highresolution remote sensing image segmentation: Structural stereotype and insufficient learning [J]. Neurocomputing, 2019, 330: 297-304.
[20]
Kalayeh M M, Shah M. Training faster by separating modes of variation in batchnormalized models [J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2019, 42(6): 1483-1500.
[21]
Hu Z, Li Y, Yang Z. Improving convolutional neural network using pseudo derivative ReLU [C]. 2018 5th International Conference on Systems and Informatics (ICSAI). IEEE, 2018: 283-287.
[22]
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation [C]. Proceedings of the IEEE international Conference on Computer Vision. 2015: 1520-1528.
[23]
Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoderdecoder architecture for image segmentation [J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[24]
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [J]. IEEE Computer Society, 2016.
[25]
Chen L C, Zhu Y, Papandreou G, et al. Encoderdecoder with atrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV). 2018: 801-818.
[26]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[27]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv preprint arXiv:1409.1556, 2014.
[28]
Wei Y, Wang Z, Xu M. Road structure refined cnn for road extraction in aerial image [J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 709-713.
[29]
Cheng X, Zhang Y, Chen Y, et al. Pest identification via deep residual learning in complex background [J]. Computers and Electronics in Agriculture, 2017, 141: 351-356.
|