[1] 李鑫然, 李书琴, 刘斌. 基于改进Faster R-CNN的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304.Li Xinran, Li Shuqin, Liu Bin. Apple leaf diseases detection model based on improved Faster R-CNN [J]. Computer Engineering, 2021, 47(11): 298-304.
[2] Rehman Z U, Khan M A, Ahmed F, et al. Recognizing apple leaf diseases using a novel parallel realtime processing framework based on MASK RCNN and transfer learning: An application for smart agriculture [J]. IET Image Processing, 2021, 15(10): 2157-2168.
[3] 尚文卿, 齐红波. 基于改进Faster R-CNN与迁移学习的农田杂草识别算法[J]. 中国农机化学报, 2022, 43(10): 176-182.
Shang Wenqing, Qi Hongbo. Identification algorithm of field weeds based on improved Faster R-CNN and transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 176-182.
[4] Pramanik A, Pal S K, Maiti J, et al. Granulated RCNN and multiclass deep sort for multiobject detection and tracking [J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 6(1): 171-181.
[5] Zhou G, Zhang W, Chen A, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion [J]. IEEE Access, 2019(7): 143190-143206.
[6] 马驰, 吴华瑞, 于会山. 基于YOLOX的穴盘甘蓝病害检测方法[J]. 江苏农业科学, 2023, 51(8): 193-202.Ma Chi, Wu Huarui, Yu Huishan. Detection method of cabbage disease based on YOLOX [J]. Jiangsu Agricultural Sciences, 2023, 51(8): 193-202.
[7] Chen Z, Wu R, Lin Y, et al. Plant disease recognition model based on improved YOLOv5 [J]. Agronomy, 2022, 12(2): 365.
[8] Terven J, CordovaEsparza D. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond [J]. ArXiv Preprint ArXiv: 2304. 00501, 2023.
[9] 张红民, 庄旭, 郑敬添, 等. 优化YOLO网络的人体异常行为检测方法[J]. 计算机工程与应用, 2023, 59(7): 242-249.Zhang Hongmin, Zhuang Xu, Zheng Jingtian, et al. Optimizing human abnormal behavior detection method of YOLO network [J]. Computer Engineering and Applications, 2023, 59(7): 242-249.
[10] 何斌, 张亦博, 龚健林, 等. 基于改进YOLOv5的夜间温室番茄果实快速识别[J]. 农业机械学报, 2022, 53(5): 201-208.
He Bin, Zhang Yibo, Gong Jianlin, et al. Fast recognition of tomato fruit in greenhouse at night based on improved YOLOv5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 201-208.
[11] 王菁, 范晓飞, 赵智慧, 等. 基于YOLO算法的不同品种枣自然环境下成熟度识别[J]. 中国农机化学报, 2022, 43(11): 165-171.
Wang Jing, Fan Xiaofei, Zhao Zhihui, et al. Maturity identification of different jujube varieties under natural environment based on YOLO algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 165-171.
[12] 文斌, 曹仁轩, 杨启良, 等. 改进YOLOv3算法检测三七叶片病害[J]. 农业工程学报, 2022, 38(3): 164-172.
Wen Bin, Cao Renxuan, Yang Qiliang, et al. Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 164-172.
[13] Soeb M J A, Jubayer M F, Tarin T A, et al. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T) [J]. Scientific reports, 2023, 13(1): 6078.
[14] Kim J H, Kim N, Won C S. Highspeed drone detection based on Yolo-v8 [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1-2.
|