[ 1]肖体琼,崔思远,陈永生,等 .我国蔬菜生产概况及机械化发展现状[ J].中国农机化学报,2017,38(8): 107-111.
Xiao Tiqiong, Cui Siyuan, Chen Yongsheng, et al. Development status of vegetable production and its mechanization in China[J]. Journal of Chinese Agricultural Mechanization,2017,38(8):107-111.
[ 2]张学杰 .我国蔬菜及其加工出口产业发展状况与对策[ J].中国蔬菜, 2018(8):1-7.
[ 3]罗印斌,蔡艳丽,兰菡,等 .农产品无损检测方法应用现状[ J].食品工业科技, 2018,39(15):340-344.
Luo Yinbin,Cai Yanli,Lan Han,et al. Application status of nondestructive testing methods for agricultural products[J]. Science and Technology of Food Industry,2018,39(15): 340-344.
[ 4]张猛,张昕明,高铭萱,等 .基于红外光谱的苹果糖度无损检测系统[ J].电子技术与软件工程, 2017(5):126.
[ 5]王转卫 .基于介电频谱与光谱技术的水果内部品质无损检测方法研究[ D].咸阳:西北农林科技大学, 2018.
[ 6]李跑,申汝佳,李尚科,等 .一种基于近红外光谱与化学计量学的绿茶快速无损鉴别方法[ J].光谱学与光谱分析, 2019,39(8):2584-2589.
Li Pao,Shen Rujia,Li Shangke,et al. Nondestructive identification of green tea based on near infrared spectroscopy and chemometric methods[J]. Spectroscopy and Spectral Analysis,2019,39(8):2584-2589.
[ 7]李尚科,杜国荣,丁胜华,等 .近红外光谱结合化学计量法快速无损鉴别燕麦[ J].食品与机械, 2019,35(2): 72-76.
Li Shangke,Du Guorong,Ding Shenghua,et al. Rapid and non.estructive identification of different brands and inferior oats by near infrared spectroscopy combined with chemometrics methods[J]. Food and Machinery,2019, 35(2):72-76.
[ 8]胡双齐 .生菜叶片重金属镉含量便携式光谱无损检测仪设计与试验[ D].镇江:江苏大学, 2021.
[ 9]孙涛 .超声波技术在食品检测中的应用分析[ J].食品安全导刊, 2022(22):147-149. Sun Tao. Application analysis of ultrasonic technology in food testing[J]. China Food Safety,2022(22):147-149.
[10]王振,谢宝源 .磁粉检测方法在液压震击器缺陷检测中的应用[ J].工程技术研究, 2022,7(14):99-101.
Wang Zhen,Xie Baoyuan. Application of magnetic particle detection method in defect detection of hydraulic jars[J]. Engineering and Technological Research,2022,7(14): 99-101.
[11]黄建平,陈镜旭,李克新,等 .基于神经结构搜索的多种植物叶片病害识别[ J].农业工程学报, 2020,36(16): 166-173.
Huang Jianping, Chen Jingxu, Li Kexin, et al. Identification of multiple plant leaf diseases using neural architecture search[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 166-173.
[12]李亚文,张军,陈月星 .基于 K-means和特征提取的植物叶部病害检测与实现[ J].陕西农业科学, 2021,67(6):33-37,41.
Li Yawen,Zhang Jun,Chen Yuexing. Detection of plant leaf diseases based on K-means and feature extraction[J]. Shaanxi Journal of Agricultural Sciences, 2021, 67(6):33-37,41.
[13]陈自宏,邓干然,崔振德,等 .基于深度学习的农作物检测识别研究现状及展望[J].现代农业装备, 2022,43(2):2-7.
[14]Yuan Yuan, Chen Lei, Wu Huarui, et al. Advanced agricultural disease image recognition technologies: A review[J]. Information Processing in Agriculture,2022,9(1):48-59.
[15]Abbas S S Z,Samar M A,Asra A,et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing,2022,126.
[16]Solemane C,Bernard K,Dantouma K,et al. Deep learning for precision agriculture: A bibliometric analysis[J]. Intelligent Systems with Applications,2022,16.
[17]谢丽娟,戴犇辉,洪友君,等 .基于全卷积神经网络的核桃异物检测装备设计与试验[ J].农业机械学报, 2022, 53(5):385-391.
Xie Lijuan,Dai Benhui,Hong Youjun,et al. Design and test of detecting system for impurities in walnut based on full convolutional neural network algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(5):385-391.
[18]Esgario G J,Krohling A R,Ventura A J. Deep learning for classification and severity estimation of coffee leaf biotic stress[J]. Computers and Electronics in Agriculture, 2020:169105162-105162.
[19]王春山,周冀,吴华瑞,等 .改进 Multi.cale ResNet的蔬菜叶部病害识别[J].农业工程学报, 2020,36(20):209-217.
Wang Chunshan,Zhou Ji,Wu Huarui,et al. Identification of vegetable leaf diseases based on improved Multi-cale ResNet[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(20):209-217.
[20]孙哲,张春龙,葛鲁镇,等 .基于 Faster R-CNN的田间西兰花幼苗图像检测方法[ J].农业机械学报, 2019,50(7):216-221.
Sun Zhe, Zhang Chunlong, Ge Luzhen, et al. Image detection method for broccoli seedlings in field based on Faster R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 216-221.
[21]钟昌源,胡泽林,李淼,等 .基于分组注意力模块的实时农作物病害叶片语义分割模型[ J].农业工程学报, 2021,37(4):208-215.
Zhong Changyuan,Hu Zelin,Li Miao,et al. Real-time semantic segmentation model for crop disease leaves using group attention module[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 208-215.
[22]钟伟镇,刘鑫磊,杨坤龙,等 .基于 Mask-RCNN的复杂背景下多目标叶片的分割和识别[ J].浙江农业学报, 2020,32(11):2059-2066.
Zhong Weizhen, Liu Xinlei, Yang Kunlong, et al. Research on multi-arget leaf segmentation and recognition algorithm under complex background based on Mask-RCNN[J]. Acta Agriculturae Zhejiangensis,2020,32(11):2059-2066.
[23]He K,Gkioxari G,Dollár P,et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2017.
[24]尚钰莹,张倩如,宋怀波 .基于 YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[ J].农业工程学报, 2022,38(9):222-229.
Shang Yuying,Zhang Qianru,Song Huaibo. Application of deep learning based on YOLOv5s to apple flower detection in natural scenes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229.
[25]岳有军,田博凯,王红君,等 .基于改进 Mask RCNN的复杂环境下苹果检测研究[ J].中国农机化学报, 2019, 40(10):128-134.
Yue Youjun,Tian Bokai,Wang Hongjun,et al. Research on apple detection in complex environment based on improved Mask RCNN[J]. Journal of Chinese Agricultural Mechanization,2019,40(10):128-134.
|