[ 1 ] Hernández‑Martínez N R, Blanchard C, Wells D, et al. Current state and future perspectives of commercial strawberry production: A review [J]. Scientia Horticulturae, 2023, 312: 111893.
[ 2 ] Zhou C, Hu J, Yue J, et al. A novel greenhouse‑based system for the detection and plumpness assessment of strawberry using an improved deep learning technique [J]. Frontiers in Plant Science, 2020, 11: 559.
[ 3 ] Munera S, Amigo M J, Blasco J, et al. Ripeness monitoring of two cultivars of nectarine using VIS-NIR hyperspectral reflectance imaging [J]. Journal of Food Engineering, 2017, 214: 29-39.
[ 4 ] Malik H M, Zhang T, Li H, et al. Mature tomato fruit detection algorithm based on improved HSV and watershed algorithm [J]. IFAC Papersonline, 2018, 51(17): 431-436.
[ 5 ] 马惠玲, 王若琳, 蔡骋, 等. 基于高光谱成像的苹果品种快速鉴别[J]. 农业机械学报, 2017, 48(4): 305-312.
Ma Huiling, Wang Ruolin, Cai Cheng, et al. Rapid identification of apple varieties based on hyperspectral imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 305-312.
[ 6 ] Indrabayu I, Arifin N, Areni I S. Strawberry ripeness classification system based on skin tone color using multi‑class support vector machine [C]. 2019 International Conference on Information and Communications Technology (ICOIACT), 2019: 191-195.
[ 7 ] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25.
[ 8 ] Appe S N, Arulselvi G, Balaji G N. CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism [J]. Peerj Computer Science, 2023, 9: e1463.
[ 9 ] 张小花, 李浩林, 李善军, 等. 基于EfficientDet-D1的草莓快速检测及分类[J]. 华中农业大学学报, 2022, 41(6): 262-269.
Zhang Xiaohua, Li Haolin, Li Shanjun, et al. Rapid detection and classification of strawberries based on EfficientDet-D1 [J]. Journal of Huazhong Agricultural University, 2022, 41(6): 262-269.
[10] 孙俊, 陈义德, 周鑫, 等. 快速精准识别棚内草莓的改进YOLOv4-Tiny模型[J]. 农业工程学报, 2022, 38(18): 195-203.
Sun Jun, Chen Yide, Zhou Xin, et al. Fast and accurate recognition of the strawberries in greenhouse based on improved YOLOv4-Tiny model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 195-203.
[11] Bharman P, Saad A S, Khan S, et al. Deep learning in agriculture: A survey [J]. Asian Journal of Research in Computer Science, 2022, 13: 28-47.
[12] Zhu L, Wang X, Ke Z, et al. BiFormer: Vision transformer with bi‑level routing attention [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[13] Chen H, Wang Y, Guo J, et al. VanillaNet: The power of minimalism in deep learning [J]. Advances in Neural Information Processing Systems, 2024, 36.
[14] Terven J, Córdova‑Esparza D M, Romero‑González J A. A comprehensive review of yolo architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS [J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[15] Soylu E, Soylu T. A performance comparison of YOLOv8 models for traffic sign detection in the robotaxi‑full scale autonomous vehicle competition [J]. Multimedia Tools and Applications, 2023, 83(8): 25005-25035.
[16] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[17] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Computer Vision-ECCV 2016: 14th European Conference, 2016: 21-37.
[18] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real‑time object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[19] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30.
[20] Ren S, Zhou D, He S, et al. Shunted self‑attention via multi‑scale token aggregation [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10853-10862.
[21] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]. International Conference on Machine Learning. Pmlr, 2015: 448-456.
|