[ 1]Torres.Sánchez J,Mesas.Carrascosa F J,Santesteban L G, et al. Grape cluster detection using UAV photogrammetric point clouds as a low.cost tool for yield forecasting in vineyards[J]. Sensors,2021,21(9):3083.
[ 2]Aguiar A S,Magalh.es S A,Dos Santos F N,et al. Grape bunch detection at different growth stages using deep learning quantized models[J]. Agronomy,2021,11(9):1890.
[ 3]Ghiani L,Sassu A,Palumbo F,et al. In.Field automatic detection of grape bunches under a totally uncontrolled environment[J]. Sensors,2021,21(11):3908.
[ 4]Li H,Li C,Li G,et al. A real.time table grape detection method based on improved YOLOv4-tiny network in complex background[J]. Biosystems Engineering,2021, 212:347-359.
[ 5]Wang J,Zhang Z,Luo L,et al. SwinGD:A robust grape bunch detection model based on Swin Transformer in complex vineyard environment[J]. Horticulturae,2021,7(11):492.
[ 6]Wei X,Xie F,Wang K,et al. A study on Shine.Muscat grape detection at maturity based on deep learning[J]. Scientific Reports,2023,13(1):4587.
[ 7]李国进,黄晓洁,李修华,等 .采用轻量级网络 MobileNetV2的酿酒葡萄检测模型[ J].农业工程学报, 2021,37(17):168-176.
Li Guojin,Huang Xiaojie,Li Xiuhua,et al. Detection model for wine grapes using MobileNetV2 lightweight network[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(17):168-176.
[ 8]Lu S,Liu X,He Z,et al. Swin.Transformer.YOLOv5 for real.time wine grape bunch detection[J]. Remote Sensing,2022,14(22):5853.
[ 9]Zhao R,Zhu Y,Li Y. An end.to.end lightweight model for grape and picking point simultaneous detection[J]. Biosystems Engineering,2022,223(Part A):174-188.
[10]Liu B,Zhang Y,Wang J,et al. An improved lightweight network based on deep learning for grape recognition in unstructured environments[J]. Information Processing in Agriculture,2024,11(2):202-216.
[11]Santos T T,De Souza L L,Dos Santos A A,et al. Grape detection,segmentation,and tracking using deep neural networks and three.dimensional association[J]. Computers and Electronics in Agriculture,2020,170:105247.
[12]龙燕,杨智优,何梦菲 .基于改进 YOLOv7的疏果期苹果目标检测方法[ J].农业工程学报, 2023,39(14): 191-199.
Long Yan,Yang Zhiyou,He Mengfei. Recognizing apple targets before thinning using improved YOLOv7[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(14):191-199.
[13]王磊磊,王斌,李东晓,等 .基于改进 YOLOv5的菇房平菇目标检测与分类研究[ J].农业工程学报, 2023,39(17):163-171.
Wang Leilei,Wang Bin,Li Dongxiao,et al. Object detection and classification of pleurotus ostreatus using improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(17):163-171.
[14]宋怀波,江梅,王云飞,等 .融合卷积神经网络与视觉注意机制的苹果幼果高效检测方法[ J].农业工程学报, 2021,37(9):297-303.
Song Huaibo,Jiang Mei,Wang Yunfei,et al. Efficient detection method for young apples based on the fusion of convolutional neural network and visual attention mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(9):297-303.
[15]Ouyang D,He S,Zhang G,et al. Efficient multi.scale attention module with cross.spatial learning[C]. 2023 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),IEEE,2023:1-5.
[16]Zhang Q,Yang Y. SA.Net:Shuffle attention for deep convolutional neural networks[C]. 2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),IEEE,2021:2235-2239.
[17]Zhang C,Ding H,Shi Q,et al. Grape cluster real.time detection in complex natural scenes based on YOLOv5s deep learning network[J]. Agriculture,2022,12(8):1242.
|