[1] 赵建敏, 李雪冬, 李宝山. 基于无人机图像的羊群密集计数算法研究[J]. 激光与光电子学进展, 2021, 58(22): 220-229.
Zhao Jianmin, Li Xuedong, Li Baoshan. Algorithm of sheep dense counting based on unmanned aerial vehicle images [J]. Laser and Optoelectronics Progress, 2021, 58(22): 220-229.
[2] 马亮亮. 辽宁省畜牧业全链条产业数字化发展现状及对策研究[J]. 农业经济, 2024(1): 48-51.
[3] 张永江, 黄琪, 陆铭宇, 等. 肉羊养殖技术效率测算与地区差异研究[J]. 中国农业资源与区划, 2022, 43(12): 75-83.
Zhang Yongjiang, Huang Qi, Lu Mingyu, et al. Estimation of technical efficiency of mutton sheep breeding and regional difference analysis [J]. Chinese Journal of Agriculture Resources and Regional Planning, 2022, 43(12): 75-83.
[4] Idrees H, Saleemi I, Seibert C, et al. Multisource multiscale counting in extremely dense crowd images [C]. Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition, 2013: 2547-2554.
[5] 黄紫云, 李亚楠, 王海晖. 基于上下文多尺度融合的棉铃计数算法[J]. 计算机应用研究, 2021, 38(6): 1913-1916.
Huang Ziyun,Li Yanan,Wang Haihui. Cotton bolls counting algorithm in field based on density level classification [J]. Application Research of Computers, 2021, 38(6): 1913-1916.
[6] 刘晓平. 基于深度学习的荧光显微成像中细胞自动计数方法研究[D]. 成都: 电子科技大学, 2020.
Liu Xiaoping. A research on Automatic cell counting method in fluorescence microscopy based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[7] Ma Zheng, Yu Lei, Chan A B. Small instance detection by integer programming on object density maps [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3689-3697.
[8] Xu B, Wang W, Falzon G, et al. Livestock classification and counting in quadcopter aerial images using Mask R—CNN [J]. International Journal of Remote Sensing, 2020(7): 1-22.
[9] 薛卫, 程润华, 康亚龙, 等. 基于GCCascade R—CNN的梨叶病斑计数方法[J]. 农业机械学报, 2022, 53(5): 237-245.
Xue Wei, Cheng Runhua, Kang Yalong, et al. Pear leaf disease spot counting method based on GCCascade R—CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 237-245.
[10] 王荣, 高荣华, 李奇峰, 等. 融合特征金字塔与可变形卷积的高密度群养猪计数方法[J]. 农业机械学报, 2022, 53(10): 252-260.
Wang Rong, Gao Ronghua, Li Qifeng, et al. Highdensity pig herd counting method combined with feature pyramid and deformable convolution [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 252-260.
[11] Zhang Y, Zhou D, Chen S, et al. Singleimage crowd counting via multicolumn convolutional neural network [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 589-597.
[12] 祁洋, 李亚楠, 孙明, 等. 基于特征融合的棉花幼苗计数算法[J]. 农业工程学报, 2022, 38(9): 180-186.
Qi Yang, Li Yanan, Sun Ming, et al. Cotton seedling counting algorithm using feature fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 180-186.
[13] 高云, 李静, 余梅, 等. 基于多尺度感知的高密度猪只计数网络研究[J]. 农业机械学报, 2021, 52(9): 172-178.
Gao Yun, Li Jing, Yu Mei, et al. Highdensity pig counting net based on multiscale aware [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 172-178.
[14] 刘云玲, 张品戈, 王千航, 等. 基于多列空洞卷积神经网络的麦穗计数方法研究 [J]. 吉林农业大学学报, 2021, 43(2): 171-180.
Liu Yunling, Zhang Pinge, Wang Qianhang, et al. Counting method for wheat spikes based on dilated multicolumn convolutional neural network [J]. Journal of Jilin Agricultural University, 2021, 43(2): 171-180.
[15] 朱学岩, 张新伟, 才嘉伟, 等. 基于无人机图像和贝叶斯CSRNet模型的粘连云杉计数 [J]. 农业工程学报, 2022, 38(14): 43-50.
Zhu Xueyan, Zhang Xinwei, Cai Jiawei, et al. Adhesion spruce counting based on UAV images and Bayesian CSRNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 43-50.
[16] Kelly N A, Khan B M, Ayub M Y, et al. Video dataset of sheep activity for animal behavioral analysis via deep learning [J]. Data in Brief, 2024, 52: 110027.
[17] Li Y, Zhang X, Chen D. CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1091-1100.
[18] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv preprint arXiv: 1409. 1556, 2014.
[19] Sindagi V A, Patel V M. HA—CCN: Hierarchical attentionbased crowd counting network [J]. IEEE Transactions on Image Processing, 2019, 29: 323-335.
[20] Tian Yukun, Lei Yiming, Zhang, Junping, et al. PaDNet: PanDensity crowd counting [J]. IEEE Transactions on Image Processing, 2020, 29: 2714-2726.
[21] Woo S, Park J, Lee J, et al. CBAM: Convolutional block attention module [C]. Proceedings of 15th European Conference on Computer Vision, 2018: 3-19.
[22] Wang C, Liao H, Wu Y, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2020: 1571-1580.
[23] Zhao Lin, Dai Haixing, Wu Zihao, et al. CP—CNN: Coreperiphery principle cuided convolutional neural network [J]. arXiv preprint arXiv:2304.10515, 2023.
[24] Shi Miaojing, Yang Zhaohui, Xu Chao, et al. Revisiting perspective information for efficient crowd counting [J].arXiv preprint arXiv: 1807.01989, 2019.
[25] Dai Feng, Liu Hao, Ma Yike, et al. Dense scale network for crowd counting [C]. Proceedings of International Conference on Multimedia Retrieval. New York: ACM Press, 2021: 64-72.
|