[1] 本刊讯. 全国农技中心印发2015年贯彻落实《全国蝗虫灾害可持续治理规划(2014—2020年)》工作方案[J]. 中国植保导刊, 2015, 35(6): 1.
[2] Mangeon S, Spessa A, Deveson E, et al. Daily mapping of Australian plague locust abundance [J]. Scientific Reports, 2020, 10(1): 16915.
[3] Yann L, Yoshua B, Geoffrey H. Deep learning [J]. Nature, 2015,521(7553):436-44.
[4] 邵泽中, 姚青, 唐健,等. 面向移动终端的农业害虫图像智能识别系统的研究与开发[J]. 中国农业科学, 2020, 53(16): 3257-3268.
Shao Zezhong, Yao Qing, Tang Jian, et al. Research and development of the intelligent identification system of agricultural pests for mobile terminals [J]. Scientia Agricultura Sinica, 2020, 53(16): 3257-3268.
[5] Srensen R A, Rasmussen J, Nielsen J, et al. Thistle detection using convolutional neural networks [C].EFITA WCCA 2017 Conference, Montpellier Supagro, Montpellier, France, 2017: 2-6.
[6] Dyrmann M, Karstoft H, Midtiby H S. Plant species classification using deep convolutional neural network [J]. Biosystems Engineering, 2016, 151: 72-80.
[7] Christiansen P, Nielsen L N, Steen K A, et al. Deep anomaly: Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field [J]. Sensors, 2016, 16(11): 1904.
[8] Rahnemoonfar M, Sheppard C. Deep count: Fruit counting based on deep simulated learning [J]. Sensors, 2017, 17(4): 905.
[9] Mohanty S P, Hughes D P, Salathe M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 1419.
[10] Farooq A, Hu J, Jia X. Analysis of spectral bands and spatial resolutions for weed classification via deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(2): 183-187.
[11] 毛文华, 郑永军, 张银桥,等. 基于机器视觉的草地蝗虫识别方法[J]. 农业工程学报, 2008, 24(11): 155-158.
Mao Wenhua, Zheng Yongjun, Zhang Yinqiao, et al. Grasshopper detection method based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(11):155-158.
[12] Fina F, Birch P, Young R, et al. Automatic plant pest detection and recognition using kmeans clustering algorithm and correspondence filters [J]. International Journal of Advanced Biotechnology and Research, 2013, 4(2): 189-199.
[13] Xia D, Chen P, Wang B, et al. Insect detection and classification based on an improved convolutional neural network [J]. Sensors, 2018, 18(12): 4169.
[14] Yang G, Yong Y, He Z, et al. A rapid, lowcost deep learning system to classify strawberry disease based on cloud service [J]. Journal of Integrative Agriculture, 2022, 21(2): 460-473.
[15] 陈娟, 陈良勇, 王生生,等. 基于改进残差网络的园林害虫图像识别. 农业机械学报, 2019, 50(5): 187-195.
Chen Juan, Chen Liangyong, Wang Shengsheng, et al. Pest image recognition of garden based on improved residual network [J]. Transactions of the Chinese Society for Agricuttural Machinery, 2019, 50(5): 187-195.
[16] 张文霞. 基于图像处理技术的蝗虫识别算法研究[D]. 呼和浩特: 内蒙古大学, 2020.
Zhang Wenxia. Research on locust recognition algorithm based on image processing technology [D]. Hohhot: Inner Mongolia University,2020.
[17] Piotr C, Arthur M, Mohammad A, et al. Mobile realtime grasshopper detection and data aggregation framework [J]. Scientific Reports,2020,10(1): 1150.
[18] 李林,柏召,刁磊,等.基于K—SSD—F的东亚飞蝗视频检测与计数方法[J].农业机械学报,2021,52(S1):261-267.
Li Lin, Bai Zhao, Diao Lei, et al. Video Detection and counting method of east Asian migratory locusts based on K—SSD—F [J]. Transactions of the Chinese Society for Agricuttural Machinery, 2021,52(S1):261-267.
[19] 樊亚娟. 内蒙古东部荒漠草原生态监测指标体系的构建[D]. 呼和浩特: 内蒙古大学, 2016.
Fan Yajuan. The construction of indicator system for desertsteppe ecological monitoring in eastern Inner Mongolia [D]. Hohhot: Inner Mongolia University,2016.
[20] 张锡鹏. 基于无人机高光谱遥感的荒漠化草原草种类分类研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
Zhang Xipeng. Study on the classification of grassland species based on UAV hyperspectral remote sensing [D]. Hohhot: Inner Mongolia Agricultural University,2020.
[21] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25.
[22] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv preprint arXiv, 2014: 1409.1556.
[23] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[24] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[25] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[26] You H, Lu Y, Tang H. Plant disease classification and adversarial attack using SimAM—EfficientNet and GP—MI—FGSM [J]. Sustainability, 2023, 15(2): 1233.
[27] 朱传军,刘荣光,成佳闻,等.基于SimAM模块与ResNet34网络的混合缺陷检测模型[J].现代制造工程,2023(2): 1-9.
Zhu Chuanjun, Liu Rongguang, Cheng Jiawen, et al. Hybrid defect detection model based on SimAM module and ResNet34 network [J]. Modern Manufacturing Engineering, 2023(2) : 1-9.
[28] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context [C]. European Conference on Computer Vision. Springer, Cham, 2014: 740-755.
|