[1] 张涛, 杜建民. 基于无人机遥感的荒漠草原微斑块识别研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 50-58.
Zhang Tao, Du Jianmin. Research on recognition method of desert steppe rat hole based on unmanned aerial vehicle hyperspectral [J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(6): 50-58.
[2] 第五次全国荒漠化和沙化状况公报发布荒漠化土地面积持续缩减[J].中国环境科学, 2016, 36(1): 205.
[3] 刘伟, 钟文勤, 王德华. 内蒙古农牧交错带长爪沙鼠种群存活的季节格局及其动态机制[J]. 兽类学报, 2020, 40(6): 571-584.
Liu Wei, Zhong Wenqin, Wang Dehua. Seasonal dynamic of population survival and its mechanism in Mongolian Gerbils (Meriones unguiculatus) in the Inner Mongolia agropastoral eco tone [J]. Acta Theriologica Sinica, 2020, 40(6): 571-584.
[4] 董佳音, 马亮, 李琨. 基于气象因子的科尔沁右翼前旗草原鼠害预测模型研究[J]. 现代农业科技, 2022(18): 73-75, 83.
Dong Jiaying, Ma Liang, Li Kun. Research on prediction model of grassland rodent damage in Horqin right front banner based on meteorological factor [J]. Modern Agricultural Science and Technology, 2022(18): 73-75, 83.
[5] 昝国盛, 王翠萍, 李锋, 等. 第六次全国荒漠化和沙化调查主要结果及分析[J]. 林业资源管理, 2023(1): 1-7.
Zan Guosheng, Wang Cuiping, Li Feng, et al. Key data results and trend analysis of the sixthnational survey on desertification and sandification [J]. Forest Resources Management, 2023(1): 1-7.
[6] 温阿敏, 郑江华, 陈梦, 等. 荒漠生态林区大沙鼠鼠洞密度的无人机遥感监测技术初探[J]. 林业科学, 2018, 54(4): 186-192.
Wen Amin, Zheng Jianghua, Chen Meng, et al. Monitoring mousehole density by rhombomys opimus in desert forests with UAV remote sensing technology [J]. Scientia Silvae Sinicae, 2018, 54(4): 186-192.
[7] 周晓琳, 安如, 陈跃红, 等. 三江源典型区鼠洞无人机遥感识别研究[J]. 亚热带资源与环境学报, 2018, 13(4): 85-92.
Zhou Xiaolin, An Ru, Chen Yuehong, et al. Identification of rat holes in the typical area of“ThreeRiver Headwaters”region by UAV remote sensing [J]. Journal of Subtropical Resources and Environment, 2018, 13(4): 85-92.
[8] Wan J, Jian D, Yu D.Research on the method of grass mouse hole target detection based on deep learning [C]. Journal of Physics: Conference Series. IOP Publishing, 2021, 1952(2): 022061.
[9] 马涛, 郑江华, 温阿敏, 等. 基于UAV低空遥感的荒漠林大沙鼠洞群覆盖率及分布特征研究——以新疆古尔班通古特沙漠南缘局部为例[J]. 生态学报, 2018, 38(3): 953-963.
Ma Tao, Zheng Jianghua, Wen Amin, et al. Group coverage of burrow entrances and distribution characteristics of desert forestdwelling rhombomys opimus based on unmanned aerial vehicle (UAV)lowaltitude remote sensing: A case study at the southern margin of the Gurbantunggut desert in Xinjiang [J]. Acta Ecologica Sinica, 2018, 38(3): 953-963.
[10] 孙迪, 倪亦非, 陈吉军, 等. 应用无人机(UAV)低空影像监测黄兔尾鼠鼠洞初探[J]. 中国植保导刊, 2019, 39(4): 35-43.
Sun Di, Ni Yifei, Chen Jijun, et al. Application of UAV lowaltitude image on rathole monitoring of eolagurus luteus [J]. China Plant Protection, 2019, 39(4): 35-43.
[11] 崔博超, 郑江华, 刘忠军, 等. 无人机遥感影像的YOLOv3鼠洞识别技术[J]. 林业科学, 2020, 56(10): 199-208.
Cui Bochao, Zheng Jianghua, Liu Zhongjun, et al. YOLOv3 mouse hole recognition based on remote sensing images from technology for unmanned aerial vehicle [J]. Scientia Silvae Sinicae, 2020, 56(10): 199-208.
[12] 张涛, 杜健民, 张海军, 等. 基于无人机高光谱荒漠草原鼠洞识别方法研究[J]. 光电子·激光, 2022, 33(2): 120-126.
Zhang Tao, Du Jianmin, Zhang Haijun, et al. Research on recognition method of desert steppe rat hole based on unmanned aerial vehicle hyperspectral [J]. Journal of Optoelectronics Laser, 2022, 33(2): 120-126.
[13] 张岩, 罗小玲, 潘新. 改进YOLOv5s的无人机鼠洞目标检测[J]. 山西农业大学学报(自然科学版), 2023, 43(4): 96-106.
Zhang Yan, Luo Xiaoling, Pan Xin. Improvement drone rat hole detection in natural scene images using YOLOv5s [J]. Journal of Shanxi Normal University (Natural Science Edition), 2023, 43(4): 96-106.
[14] Terven J, CordovaEsparza D. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond [J]. arXiv preprint arXiv:2304.00501, 2023.
[15] Zhai X, Huang Z, Li T, et al. YOLO—drone: An optimized YOLOv8 network for tiny UAV object detection [J]. Electronics, 2023, 12(17): 3664.
[16] Li Y, Fan Q, Huang H, et al. A modified YOLOv8 detection network for UAV aerial image recognition [J]. Drones, 2023, 7(5): 304.
[17] 刘瑞锦, 何章鸣. 基于YOLOv8的卫星遥感图像快速目标检测方法[J].空间控制技术与应用, 2023, 49(5): 89-97.
Liu Ruijin, He Zhangming. A fast target detection method for satellite remote sensing lmages based on YOLOv8 [J]. Aerospace Control and Application, 2023, 49(5): 89-97.
|