[1] 白人朴. 加快解决水稻种植机械化瓶颈制约的思考[J]. 中国农机化学报, 2016, 37(12): 1-5, 47.
Bai Renpu. Thinking of accelerating solutions to bottleneck restrictions of rice planting mechanization [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(12): 1-5,47.
[2] 夏倩倩, 张文毅, 纪要, 等. 我国机械抛秧技术与装备的研究现状及趋势[J]. 中国农机化学报, 2019, 40(6): 201-208.
Xia Qianqian, Zhang Wenyi, Ji Yao, et al. Research status and trend of mechanical throwing seedling technology and equipment in China [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 201-208.
[3] 李泽华, 马旭, 李秀昊,等.水稻栽植机械化技术研究进展[J]. 农业机械学报, 2018, 49(5): 1-20.
Li Zehua, Ma Xu, Li Xiuhao, et al. Research progress of rice transplanting mechanization [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 1-20.
[4] 王玉兴, 罗锡文, 唐艳芹, 等. 气力有序抛秧机输秧机构动态模拟研究[J]. 农业工程学报, 2004, 20(2): 109-112.
Wang Yuxing, Luo Xiwen,Tang Yanqin, et al. Dynamic simulation of the riceseedling feeding mechanism of paddy seedling pneumatic throwing transplanter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(2): 109-112.
[5] 王立臣, 王苹, 李益民, 等. 2ZPY-H530型水稻钵苗行栽机试验研究[J]. 中国农业大学学报, 2002, 7(4): 21-24.
Wang Lichen, Wang Ping, Li Yimin, et al. Experiment study on 2ZPY-H530 rice pottedseedling transplant [J]. Journal of China Agricultural University, 2002, 7(4): 21-24.
[6] 汪友祥, 彭洪巽. 2ZP-13型水稻有序抛秧机的研发与推广[J]. 农业机械, 2018(11): 87-90.
[7] 蒋俞, 孙泽宇, 汪若尘, 等. 丘陵山区履带式作业机全向调平系统设计与性能试验[J]. 农业工程学报, 2023, 39(18): 64-73.
Jiang Yu, Sun Zeyu, Wang Ruochen, et al. Design and performance test of the omnidirectional leveling system for crawler work machine in hilly areas [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(18): 64-73.
[8] Liu W, Zhou Z, Xu X, et al. Evaluation method of rowing performance and its optimization for UAVbased shot seeding device on rice sowing [J]. Computers and Electronics in Agriculture, 2023, 207: 107718.
[9] 张青松, 张恺, 廖庆喜, 等.油菜无人机飞播装置设计与试验[J].农业工程学报, 2020, 36(14): 138-147.
Zhang Qingsong, Zhang Kai, Liao Qingxi, et al. Design and experiment of rapeseed aerial seeding device used for UAV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 138-147.
[10] 张海艳, 兰玉彬, 文晟, 等.无人机旋翼风场作用下雾滴在水稻植株上的黏附量模型构建[J].农业工程学报, 2022, 38(18): 40-50.
Zhang Haiyan, Lan Yubin, Wen Sheng, et al. Modelling approach of spray retention on rice in plant protection using unmanned aerial vehicle [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 40-50.
[11] Tang Y, Fu Y, Guo Q, et al. Numerical simulation of the spatial and temporal distributions of the downwash airflow and spray field of a coaxial eightrotor plant protection UAV in hover [J]. Computers and Electronics in Agriculture, 2023, 206: 107634.
[12] Song C, Liu L, Wang G, et al. Particle deposition distribution of multirotor UAVbased fertilizer spreader under different height and speed parameters [J]. Drones, 2023, 7(7): 425.
[13] Song C, Zhou Z, Zang Y, et al. Variablerate control system for UAVbased granular fertilizer spreader [J]. Computers and Electronics in Agriculture,2021, 180: 105832.
[14] 肖汉祥, 李燕芳, 袁龙宇, 等. 我国农用无人机在水稻生产中的应用现状与展望[J].广东农业科学, 2021, 48(8): 139-147.
Xiao Hanxiang, Li Yanfang, Yuan Longyu, et al. Application and prospect of China agricultural unmanned aerial vehicle in rice production [J]. Guangdong Agricultural Sciences, 2021, 48(8): 139-147.
|