[1] Kumar M K, Sandeep B V, Rao P S. Development of salt tolerant callus cultures by somatic hybridization between Oryza sativa and mangrove grass Myriostachya wightiana [J]. Annals of Agrarian Science, 2018, 16(4): 396-404.
[2] 李鑫, 余海, 王远成, 等. 局地气候下不同初始水分稻谷静态储藏的模拟研究[J]. 河南工业大学学报(自然科学版), 2023, 44(4): 114-122, 129.
Li Xin, Yu Hai, Wang Yuancheng, et al. Simulation study on static storage of rice with different initial moisture under local climate [J]. Journal of Henan University of Technology (Natural Science Edition), 2023, 44(4): 114-122, 129.
[3] 罗春兴, 唐正, 陈嘉睿, 等. 稻谷微波干燥技术现状及连续式微波干燥机上的干燥试验研究[J]. 农产品加工, 2020(3): 74-77, 80.
Luo Chunxing, Tang Zheng, Chen Jiarui, et al. Current status of rice drying using microwave drying technology and drying test research on continuous microwave dryer [J]. Agricultural Product Processing, 2020(3): 74-77, 80.
[4] Tian Y, Zhao Y, Huang J, et al. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms [J]. Food Chemistry, 2016, 197: 714-722.
[5] 高青青, 刘娟, 李霞, 等. 不同干燥方法对雪胆湿法改性膳食纤维品质的影响[J]. 北方园艺, 2023(6): 80-86.
[6] Dibagar N, Amiri Chayjan R. Rough rice convective drying enhancement by intervention of airborne ultrasoundA response surface strategy for experimental design and optimization [J]. Drying Technology, 2019, 37(9): 1097-1112.
[7] Bagheri N, Dinani S T. Investigation of ultrasoundassisted convective drying process on quality characteristics and drying kinetics of zucchini slices [J]. Heat and Mass Transfer, 2019, 55(8): 2153-2163.
[8] Lespinard A R, Bon J, Cárcel J A, et al. Effect of ultrasonicassisted blanching on size variation, heat transfer, and quality parameters of mushrooms [J]. Food and bioprocess technology, 2015, 8: 41-53.
[9] 陈文敏, 彭星星, 马婷, 等. 超声处理对中短波红外干燥红枣时间及品质的影响[J]. 食品科学, 2015, 36(8): 74-80.
Chen Wenmin, Peng Xingxing, Ma Ting, et al. Impact of ultrasonic treatment on drying time and quality of red jujubes dried by medium and shortwavelength infrared radiation [J]. Food Science, 2015, 36(8): 74-80.
[10] Bonto A P, Tiozon Jr R N, Sreenivasulu N, et al. Impact of ultrasonic treatment on rice starch and grain functional properties: A review [J]. Ultrasonics Sonochemistry, 2021, 71: 105383.
[11] Lü W, Lü H, Jin X, et al. Effects of ultrasoundassisted methods on the drying processes and quality of apple slices in microwave drying [J]. Drying Technology, 2020, 38(13): 1806-1816.
[12] 陶虹, 夏强, 李云飞. 超声波与超高压处理对全谷物糙米蒸煮品质和抗氧化活性的影响比较[J]. 食品工业科技, 2017, 38(10): 91-95, 102.
Tao Hong, Xia Qiang, Li Yunfei. Comparative effects of ultrasound and high hydrostatic pressuretreatments on cooking properties and antioxidant activity of brown rice [J]. Science and Technology of Food Industry 2017, 38(10): 91-95, 102.
[13] 戚思影. 低频超声预处理对脱水香菇品质及风味的影响 [D]. 扬州: 扬州大学, 2021.
[14] 贾文婷, 张冉冉, 李文绮, 等. 红枣热风微波耦合干燥工艺优化及干燥特性和微观结构研究[J].食品安全质量检测学报, 2023, 14(20): 269-78.
Jia Wenting, Zhang Ranran, Li Wenqi, et al. Optimization of hot airmicrowave coupling drying process and study on drying characteristics and microstructure of Ziziphus jujuba Mill [J]. Journal of Food Safety and Quality, 2023, 14(20): 269-78.
[15] 侯俐南, 丁玉琴, 林亲录, 等. 超声波辅助浸泡对稻谷含水量和蒸谷米品质的影响 [J]. 粮食与油脂, 2018, 31(3): 37-40.
Hou Linan, Ding Yuqin, Lin Qinlu, et al. Effect of ultrasonicassisted soaking on the moisture content of paddy and the quality of parboiled rice [J]. Cereals & Oils, 2018, 31(3): 37-40.
[16] 李瑞敏, 邹佳池, 张洪清, 等. 微波干燥对稻谷的影响研究进展[J]. 食品科技, 2023, 48(1): 153-158.
Li Ruimin, Zou Jiachi, Zhang Hongqing, et al. Research progress on the effect of microwave drying on rice [J]. Food Science and Technology, 2023, 48(1): 153-158.
[17] 索浩然. 超声波预处理对铁皮石斛干燥特性及品质的影响 [D]. 芜湖: 安徽工程大学, 2020.
[18] Wu X, Zhou Y, Lu Q, et al. Ultrasonicassisted immersion of parboiled treatment improves head rice yield and nutrition of black rice and provides a softer texture of cooked black rice [J]. Ultrasonics Sonochemistry, 2023, 95: 106378.
[19] 于海霞. 毛竹材紫外光老化机制研究 [D]. 北京: 中国林业科学研究院, 2015.
[20] Ramesh M N, Wolf W, Tevini D, et al. Influence of processing parameters on the drying of spice paprika [J]. Journal of Food Engineering, 2001, 49(1): 63-72.
[21] Zenoozian M S, Devahastin S. Application of wavelet transform coupled with artificial neural network for predicting physicochemical properties of osmotically dehydrated pumpkin [J]. Journal of Food Engineering, 2009, 90(2): 219-227.
[22] Xiao H W, Yao X D, Lin H, et al. Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices [J]. Journal of Food Process Engineering, 2012, 35(3): 370-390.
[23] Chen X D. Moisture diffusivity in food and biological materials [J]. Drying Technology, 2007, 25(7-8): 1203-1213.
[24] Wang Y, Chen L, Yang T, et al. A review of structural transformations and properties changes in starch during thermal processing of foods [J]. Food Hydrocolloids, 2021, 113: 106543.
[25] Lovera M, de Castro G M C, da Rocha Pires N, et al. Pyrodextrinization of yam (Dioscorea sp.) starch isolated from tubers grown in Brazil and physicochemical characterization of yellow pyrodextrins [J]. Carbohydrate Polymers, 2020, 242: 116382.
[26] Li Z, Wang L, Chen Z, et al. Impact of binding interaction characteristics on physicochemical, structural, and rheological properties of waxy rice flour [J]. Food Chemistry, 2018, 266: 551-556.
[27] Li S, Ren X, Zhang M, et al. New perspective to guide rice breeding: Evaluating the eating quality of japonica rice [J]. Cereal Chemistry, 2022, 99(3): 603-614.
|