[ 1 ] 樊娇, 雷涛, 韩伟, 等. 无人机航迹规划技术研究综述[J]. 郑州大学学报(工学版), 2021, 42(3): 39-46.
Fan Jiao, Lei Tao, Han Wei, et al. A survey of UAV path planning [J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(3): 39-46.
[ 2 ] 范铮铮, 王正平, 葛佳昊. 基于A*算法的多无人机实时打击航迹规划[J]. 战术导弹技术, 2021(5): 94-101, 112.
[ 3 ] 岳秀, 张超峰, 张伟, 等. 基于A-Star和改进模拟退火算法的航迹规划[J]. 控制工程, 2020, 27(8): 1365-1371.
Yue Xiu, Zhang Chaofeng, Zhang Wei, et al. UAV path planning based on A* algorithm and improved simulated annealing algorithm [J]. Control Engineering of China, 2020, 27(8): 1365-1371.
[ 4 ] 邓叶, 姜香菊. 基于改进人工势场法的四旋翼无人机航迹规划算法[J]. 传感器与微系统, 2021, 40(7): 130-133.
Deng Ye, Jiang Xiangju. Four‑rotor UAV track planning algorithm based on improved artificial potential field method [J]. Transducer and Microsystem Technologies, 2021, 40(7): 130-133.
[ 5 ] Yao M, Zhao M. Unmanned aerial vehicle dynamic path planning in an uncertain environment [J]. Robotica, 2015, 33(3): 611-621.
[ 6 ] 邓灏, 唐希浪, 蔡忠义, 等. 基于改进遗传算法的多无人机搜索航路规划[J]. 电光与控制, 2024, 31(4): 12-17.
Deng Hao, Tang Xilang, Cai Zhongyi, et al. Multi‑UAV search route planning based on improved genetic algorithm [J]. Electronics Optics & Control, 2024, 31(4): 12-17.
[ 7 ] 袁一帆, 吴德伟, 戴传金, 等. 基于RRT算法改进的无人机航迹规划研究[J]. 战术导弹技术, 2022(5): 126-133.
Yuan Yifan, Wu Dewei, Dai Chuanjin, et al. Research on UAV's path planning based on improved RRT algorithm [J]. Tactical Missile Technology, 2022(5): 126-133.
[ 8 ] 李宪强, 马戎, 张伸, 等. 蚁群算法的改进设计及在航迹规划中的应用[J]. 航空学报, 2020, 41(S2): 213-219.
Li Xianqiang, Ma Rong, Zhang Shen, et al. Improved design of ant colony algorithm and its application in path planning [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 213-219.
[ 9 ] 俞烨, 贺乃宝, 高倩, 等. 基于改进蚁群算法的移动机器人路径规划[J]. 物联网技术, 2017, 7(3): 46-49, 52.
Yu Ye, He Naibao, Gao Qian, et al. Mobile robot path planning based on improved ant colony algorithm [J]. Internet of Things Technologies, 2017, 7(3): 46-49, 52.
[10] 周兰凤, 钱伟杰, 曹国刚, 等. 基于三维地形的路径规划算法研究[J]. 计算机应用与软件, 2018, 35(8): 275-278, 302.
Zhou Lanfeng, Qian Weijie, Cao Guogang, et al. Research on path planning algorithm based on 3D terrain [J]. Computer Applications and Software, 2018, 35(8): 275-278, 302.
[11] 周敬东, 杨磊, 高伟周, 等. 改进蚁群算法在机器人路径规划上的应用[J]. 湖北工业大学学报, 2021, 36(5): 19-22.
Zhou Jingdong, Yang Lei, Gao Weizhou, et al. Application of improved ant colony algorithm in robot path planning [J]. Journal of Hubei University of Technology, 2021, 36(5): 19-22.
[12] 高飞. MATLAB智能算法超级学习手册[M]. 北京: 人民邮电出版社, 2014.
[13] Huang C, Lan Y, Liu Y, et al. A new dynamic path planning approach for unmanned aerial vehicles [J]. Complexity, 2018(1): 8420294.
[14] 郭剑东, 王康, 李志宇. 基于凸面体圆弧航路的无人机自主避障算法[J]. 控制与决策, 2021, 36(3): 653-660.
[15] 刘光才, 马寅松, 齐福强, 等. 基于改进A*—人工势场法的城市物流无人机路径规划[J]. 飞行力学, 2022, 40(6): 16-23.
Liu Guangcai, Ma Yinsong, Qi Fuqiang, et al. Flight path planning for urban logistics UAV based on improved A*—APF algorithm [J]. Flight Dynamics, 2022, 40(6): 16-23.
[16] 孙光辉. 风场环境下植保无人飞机丘陵地区路径规划技术研究[D]. 北京: 中国农业机械化科学研究院, 2021.
[17] 段海滨, 王道波, 朱家强, 等. 蚁群算法理论及应用研究的进展[J]. 控制与决策, 2004(12): 1321-1326, 1340.
[18] 曾德全, 余卓平, 张培志, 等. 三次B样条曲线的无人车避障轨迹规划[J]. 同济大学学报(自然科学版), 2019, 47(S1): 159-163.
Zeng Dequan, Yu Zhuoping, Zhang Peizhi, et al. Cubic B-spline curve for obstacle avoidance trajectory planning of unmanned vehicle [J]. Journal of Tongji University (Natural Science), 2019, 47(S1): 159-163.
[19] 王宇, 王文浩, 徐凡, 等. 基于改进蚁群算法的植保无人机路径规划方法[J]. 农业机械学报, 2020, 51(11): 103-112, 92.
Wang Yu, Wang Wenhao, Xu Fan, et al. Path planning approach based on improved ant colony optimization for sprayer UVA [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 103-112, 92.
[20] 刘庆健, 疏利生, 刘刚, 等. 低空无人机路径规划算法综述[J]. 航空工程进展, 2023, 14(2): 24-34.
Liu Qingjian, Shu Lisheng, Liu Gang, et al. A survey of low altitude UAV path planning algorithms [J]. Advances in Aeronautical Science and Engineering, 2023, 14(2): 24-34.
[21] 唐熙. 植保无人机在丘陵山地环境下的航迹规划算法研究[D]. 重庆: 重庆三峡学院, 2023.
[22] Luo Q, Wang H, Zheng Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm [J]. Neural Computing and Applications, 2020, 32(6): 1555-1566.
|