Journal of Chinese Agricultural Mechanization ›› 2025, Vol. 46 ›› Issue (3): 261-270.DOI: 10.13733/j.jcam.issn.2095-5553.2025.03.038
• Research on Agricultural Intelligence • Previous Articles Next Articles
Xu Yuchao1, 2, Wu Qian2, 3, Zhang Bingyuan1, 2, 3, Zhou Lingli2, 3, Ren Ni1, 2, 3, Zhang Meina1, 2, 3
Online:
2025-03-15
Published:
2025-03-13
许毓超1, 2,吴茜2, 3,张兵园1, 2, 3,周玲莉2, 3,任妮1, 2, 3,张美娜1, 2, 3
基金资助:
CLC Number:
Xu Yuchao, , Wu Qian, , Zhang Bingyuan, , , Zhou Lingli, , Ren Ni, , , Zhang Meina, , . Review on lightweight deep learning networks for object detection in crops[J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 261-270.
许毓超, , 吴茜, , 张兵园, , , 周玲莉, , 任妮, , , 张美娜, , . 轻量级深度学习网络在农作物目标检测的应用进展[J]. 中国农机化学报, 2025, 46(3): 261-270.
[1] Tian H, Wang T, Liu Y, et al. Computer vision technology in agricultural automation: A review [J]. Information Processing in Agriculture, 2020, 7(1): 1-19. [2] 宋怀波, 尚钰莹, 何东健. 果实目标深度学习识别技术研究进展[J]. 农业机械学报, 2023, 54(1): 1-19. Song Huaibo, Shang Yuying, He Dongjian. Review on deep learning technology for fruit target recognition [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 1-19. [3] Zaidi S S A, Ansari M S, Aslam A, et al. A survey of modern deep learning based object detection models [J]. Digital Signal Processing, 2022, 126: 103514. [4] Cao K, Liu Y, Meng G, et al. An overview on edge computing research [J]. IEEE Access, 2020, 8: 85714-85728. [5] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv: 1704.04861, 2017. [6] Sandler M, Howard A, Zhu M, et al. MobileNetv2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. [7] Howard A, Sandler M, Chu G, et al. Searching for MobileNetv3 [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. [8] Zhang X, Zhou X, Lin M, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856. [9] Ma N, Zhang X, Zheng H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131. [10] Tan M, Le Q. EfficientNet: Rethinking model scaling for convolutional neural networks [C]. International Conference on Machine Learning, 2019: 6105-6114. [11] Tan M, Le Q. EfficientNetv2: Smaller models and faster training [C]. International Conference on Machine Learning, 2021: 10096-10106. [12] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. [13] Tang Y, Han K, Guo J, et al. GhostNetv2: Enhance cheap operation with longrange attention [J]. Advances in Neural Information Processing Systems, 2022, 35: 9969-9982. [14] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [15] Gou J, Yu B, Maybank S J, et al. Knowledge distillation: A survey [J]. International Journal of Computer Vision, 2021, 129: 1789-1819. [16] Adarsh P, Rathi P, Kumar M. YOLOv3—Tiny: Object detection and recognition using one stage improved model [C]. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020: 687-694. [17] Huang R, Pedoeem J, Chen C. YOLO—LITE: A realtime object detection algorithm optimized for nonGPU computers [C]. 2018 IEEE International Conference on Big Data (big data). IEEE, 2018: 2503-2510. [18] 张伏, 陈自均, 鲍若飞, 等. 基于改进型YOLOv4—LITE轻量级神经网络的密集圣女果识别[J]. 农业工程学报, 2021, 37(16): 270-278. Zhang Fu, Chen Zijun, Bao Ruofei, et al. Recognition of dense cherry tomatoes based on improved YOLOv4—LITE lightweight neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 270-278. [19] 杨坚, 钱振, 张燕军, 等. 采用改进YOLOv4—tiny的复杂环境下番茄实时识别[J]. 农业工程学报, 2022, 38(9): 215-221. Yang Jian, Qian Zhen, Zhang Yanjun, et al. Realtime recognition of tomatoes in complex environments based on improved YOLOv4—tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 215-221. [20] Zeng T, Li S, Song Q, et al. Lightweight tomato realtime detection method based on improved YOLO and mobile deployment [J]. Computers and Electronics in Agriculture, 2023, 205: 107625. [21] Wang X, Wu Z, Jia M, et al. Lightweight SM—YOLOv5 tomato fruit detection algorithm for plant factory [J]. Sensors, 2023, 23(6): 3336. [22] Li T, Sun M, He Q, et al. Tomato recognition and location algorithm based on improved YOLOv5 [J]. Computers and Electronics in Agriculture, 2023, 208: 107759. [23] Ji J, Zhu X, Ma H, et al. Apple fruit recognition based on a deep learning algorithm using an improved lightweight network [J]. Applied Engineering in Agriculture, 2021, 37(1): 123-134. [24] Mirjalili S, Lewis A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51-67. [25] 王卓, 王健, 王枭雄, 等. 基于改进YOLOv4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302. Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight realtime apple detection method based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302. [26] Zhang C, Kang F, Wang Y. An improved apple object detection method based on lightweight YOLOv4 in complex backgrounds [J]. Remote Sensing, 2022, 14(17): 4150. [27] Sun L, Hu G, Chen C, et al. Lightweight apple detection in complex orchards using YOLOV5—PRE [J]. Horticulturae, 2022, 8(12): 1169. [28] Li Z, Zhang X, Feng X, et al. Detection method of apple based on improved lightweight YOLOv5 [C]. Cognitive Systems and Information Processing: 6th International Conference, ICCSIP 2021. [29] 张震, 周俊, 江自真, 等. 基于改进YOLOv7轻量化模型的自然果园环境下苹果识别方法[J]. 农业机械学报, 2024, 55(3): 231-242, 262. Zhang Zhen, Zhou Jun, Jiang Zizhen, et al. Lightweight apple recognition method in natural orchard environment based on improved YOLOv7 model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(3): 231-242, 262. [30] Zhang W, Liu Y, Chen K, et al. Lightweight fruitdetection algorithm for edge computing applications [J]. Frontiers in Plant Science, 2021, 12: 740936. [31] Zheng Z, Xiong J, Lin H, et al. A method of green citrus detection in natural environments using a deep convolutional neural network [J]. Frontiers in Plant Science, 2021, 12: 705737. [32] Lü S, Li R, Zhao Y, et al. Green citrus detection and counting in orchards based on YOLOv5—CS and AI edge system [J]. Sensors, 2022, 22(2): 576. [33] Chen J, Liu H, Zhang Y, et al. A multiscale lightweight and efficient model based on YOLOv7: Applied to citrus orchard [J]. Plants, 2022, 11(23): 3260. [34] Huang M L, Wu Y S. GCS—YOLOV4—Tiny: A lightweight group convolution network for multistage fruit detection [J]. Mathematical Biosciences and Engineering, 2023, 20(1): 241-268. [35] Xu L, Wang Y, Shi X, et al. Realtime and accurate detection of citrus in complex scenes based on HPL—YOLOv4 [J]. Computers and Electronics in Agriculture, 2023, 205: 107590. [36] 王金鹏, 高凯, 姜洪喆, 等. 基于改进的轻量化卷积神经网络火龙果检测方法(英文)[J]. 农业工程学报, 2020, 36(20): 218-225. Wang Jinpeng, Gao Kai, Jiang Hongzhe, et al. Method for detecting dragon fruit based on improved lightweight convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 218-225. [37] Zhang Y, Yu J, Chen Y, et al. Realtime strawberry detection using deep neural networks on embedded system (RTSDNet): An edge AI application [J]. Computers and Electronics in Agriculture, 2022, 192. [38] 汤泽政, 伍奕桦, 徐新明, 等. 基于改进YOLOv7—Tiny的成熟草莓识别模型研究[J]. 江西农业大学学报, 2023, 45(6): 1528-1542.Tang Zezheng, Wu Yihua, Xu Xinming, et al. Research on ripe-strawberry recognition model based on improved YOLOv7—Tiny [J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(6): 1528-1542. [39] Liu B, Zhang Y, Wang J, et al. An improved lightweight network based on deep learning for grape recognition in unstructured environments [J]. Information Processing in Agriculture, 2024, 11(2): 202-216. [40] Chen J, Ma A, Huang L, et al. GAYOLO: A lightweight YOLO model for dense and occluded grape target detection [J]. Horticulturae, 2023, 9(4): 443. [41] 李茂, 肖洋轶, 宗望远, 等. 基于改进YOLOv8模型的轻量化板栗果实识别方法[J]. 农业工程学报, 2024, 40(1): 209-217. Li Mao, Xiao Yangyi, Zong Wangyuan, et al. Detecting chestnuts using improved lightweight YOLOv8 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(1): 209-217. [42] Sanaeifar A, Guindo M L, Bakhshipour A, et al. Advancing precision agriculture: The potential of deep learning for cereal plant head detection [J]. Computers and Electronics in Agriculture, 2023, 209: 107875. [43] Bhagat S, Kokare M, Haswani V, et al. WheatNetlite: A novel light weight network for wheat head detection [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1332-1341. [44] Dong Y, Liu Y, Kang H, et al. Lightweight and efficient neural network with SPSA attention for wheat ear detection [J]. PeerJ Computer Science, 2022, 8: e931. [45] Yang H, Shen Z, Zhao Y. AsymmNet: Towards ultralight convolution neural networks using asymmetrical bottlenecks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2339-2348. [46] Sun B, Zhou W, Zhu S, et al. Universal detection of curved rice panicles in complex environments using aerial images and improved YOLOv4 model [J]. Frontiers in Plant Science, 2022, 13: 1021398. [47] Khaki S, Safaei N, Pham H, et al. WheatNet: A lightweight convolutional neural network for highthroughput imagebased wheat head detection and counting [J]. Neurocomputing, 2022, 489: 78-89. [48] 朱德利, 文瑞, 熊俊逸. 融合坐标注意力机制的轻量级玉米花丝检测[J]. 农业工程学报, 2023, 39(3): 145-153. Zhu Deli, Wen Rui, Xiong Junyi. Lightweight corn silk detection network incorporating with coordinate attention mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(3): 145-153. [49] Ma X, Li Y, Wan L, et al. Classification of seed corn ears based on custom lightweight convolutional neural network and improved training strategies [J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105936. [50] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18. Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18. [51] 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204.〖JP2〗Liu Yang, Feng Quan, Wang Shuzhi. Plant disease identification method based on lightweight CNN and mobile application [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. [52] Khan E, Rehman M Z U, Ahmed F, et al. Classification of diseases in citrus fruits using SqueezeNet [C]. 2021 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2021: 67-72. [53] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNetlevel accuracy with 50x fewer parameters and <0.5 MB model size [J]. arXiv preprint arXiv:1602.07360, 2016. [54] 卫雅娜, 王志彬, 乔晓军, 等. 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报, 2022, 43(11): 172-181. Wei Yana, Wang Zhibin, Qiao Xiaojun, et al. Lightweight rice disease identification method based on attention mechanism and EfficientNet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11):172-181. [55] Wang H, Shang S, Wang D, et al. Plant disease detection and classification method based on the optimized lightweight YOLOv5 model [J]. Agriculture, 2022, 12(7): 931. [56] 谢家兴, 陈斌瀚, 彭家骏, 等. 基于改进ShuffleNet V2的荔枝叶片病虫害图像识别[J]. 果树学报, 2023, 40(5): 1024-1035.Xie Jiaxing, Chen Binhan, Peng Jiajun, et al. Image recognition of leaf pests and diseases based on improved ShuffleNet V2 in litchi [J]. Journal of Fruit Science, 2023, 40(5): 1024-1035. [57] Bhuiyan M A B, Abdullah H M, Arman S E, et al. BananaSqueezeNet: A very fast, lightweight convolutional neural network for diagnosis of three prominent banana leaf diseases [J]. Smart Agricultural Technology, 2023: 100214. |
[1] | Lü Zongwang, , Wang Tiantian, , Sun Fuyan, , Zhu Yuhua, . Improved YOLOv8m-based grain insect detection method for wheat storage [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 108-114. |
[2] | Wu Jian, , Ye Mengyan, Zhang Tongfeng. Design and experiment of an intelligent fresh tea leaves grading device [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 139-145. |
[3] | Guo Jingtao, Lü Feng, Zhang Huiting, Yang Biao, Liu Dayang. Strawberry target detection method based on transfer learning and lightweight YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 253-260. |
[4] | Wu Qiulan, Chen Xuefei, Chen Chao, Zhang Feng, Wang Shumei, Zhao Heng. Identification method of Lentinus Edodes logs contamination based on improved YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(2): 217-223. |
[5] | Dai Min, Sun Wenjing, Miao Hong. Identification of pepper pests and diseases based on lightweight CBAM—GoogLeNet [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(2): 224-229. |
[6] | Luo Liuming, Li Yanzhou, Shi Meiqi, Huang Xin, Chen Xi. A identification method for sugarcane weed based on YOLOv8n [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(2): 237-244. |
[7] | Peng Yunong, , , Liu Pingzeng, , , Zhang Yan, , . Construction of knowledge mapping of maize production processes based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(2): 245-252. |
[8] | Xia Zilin, Zhang Xinzhou, Wang Wenbo, Xia Xianfei, Chen Lan, Gu Jinan. Research on high precision detection method of broad bean pods based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(1): 157-163. |
[9] | Li Chunyu, Guo Xiaoqin, Yang Jingjing, Li Zhonghua. Fruit image recognition based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(1): 198-203. |
[10] | Niu Panting, Zhang Baolin, , , Pan Lijie, Guo Jianpeng. Identification and explainability of maize leaf diseases based on improved GoogLeNet#br# [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(1): 204-212. |
[11] | Peng Yong, Qiao Yinhu, Zhang Chunyan, Yao Jie, Bao Dianling. Research of strawberry detection method with improved YOLOv5 model [J]. Journal of Chinese Agricultural Mechanization, 2025, 46(1): 213-219. |
[12] | Han Pengfei, Song Qijiang, Jia Mengshi. Wheat seed classification based on improved lightweight EfficientNet-V2 model [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 111-117. |
[13] | Li Zhichen, Ling Xiujun, Li Hongqiu. Engine misfire fault diagnosis based on sound deep learning [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 134-140. |
[14] | Sang Yinan, Xu Zenglai, Wang Qiong, Ge Haitao, Wang Dianguang. Design of a wheeled flower picking robot: Taking Abelmoschus manihot (Linn.) Medicus as an example [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 202-208. |
[15] | Zhang Chuandong, Qi Lu, Ding Huali. Detection method of multi variety grape cluster based on improved YOLOv8n deep learning algorithm [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9): 220-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296