[ 1 ] 李东升, 胡文泽, 兰玉彬, 等. 深度学习在杂草识别领域的研究现状与展望[J]. 中国农机化学报, 2022, 43(9): 137-144.
Li Dongsheng, Hu Wenze, Lan Yubin, et al. Research status and prospect of deep learning in weed recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 137-144.
[ 2 ] 任全会, 杨保海. 图像处理技术在田间杂草识别中应用研究[J]. 中国农机化学报, 2020, 41(6): 154-158.
Ren Quanhui, Yang Baohai. Application of image processing technology in field weed identification [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 154-158.
[ 3 ] 侯雨, 曹丽英, 丁小奇, 等. 基于边缘检测和BP神经网络的大豆杂草识别研究[J]. 中国农机化学报, 2020, 41(7): 185-190.
Hou Yu, Cao Liying, Ding Xiaoqi, et al. Research on soybean weed identification based on edge detection and BP neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 185-190.
[ 4 ] 宋建熙, 李兴科, 于哲, 等. 改进Retina—Net的草坪杂草目标检测[J]. 中国农机化学报, 2022, 43(12): 170-177.
Song Jianxi, Li Xingke, Yu Zhe, et al. Object detection for weeds in lawns based on improved Retina—Net [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 170-177.
[ 5 ] 李春明, 逯杉婷, 远松灵, 等. 基于Faster R—CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R—CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[ 6 ] Han X, Chang J, Wang K. You only look once: Unified, real‑time object detection [J]. Procedia Computer Science, 2021, 183(1): 61-72.
[ 7 ] 杨文姬, 胡文超, 赵应丁, 等. 基于改进YOLOv5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115.
Yang Wenji, Hu Wenchao, Zhao Yingding, et al. Research on plant disease detection algorithm based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 108-115.
[ 8 ] 汪颖, 王峰, 李玮, 等. 用于复杂环境下果蔬检测的改进YOLOv5算法研究[J]. 中国农机化学报, 2023, 44(1): 185-191.
Wang Ying, Wang Feng, Li Wei, et al. Study on improved YOLOv5 algorithm for fruit and vegetable detection in complex environments [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 185-191.
[ 9 ] 张磊, 刘琪芳, 聂红玫, 等. 基于改进YOLOv4网络模型的番茄果实检测[J]. 中国农机化学报, 2022, 43(12): 162-169.
Zhang Lei, Liu Qifang, Nie Hongmei, et al. Tomato fruit detection based on improved YOLOv4 network model [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 162-169.
[10] 王权顺, 吕蕾, 黄德丰, 等. 基于改进YOLOv4算法的苹果叶部病害缺陷检测研究[J]. 中国农机化学报, 2022, 43(11): 182-187.
Wang Quanshun, Lü Lei, Huang Defeng, et al. Research of apple leaf disease defect based on improved YOLOv4 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 182-187.
[11] 张三林, 张立萍, 郑威强, 等. 基于YOLOv5的核桃品种识别与定位[J]. 中国农机化学报, 2022, 43(7): 167-172.
Zhang Sanlin, Zhang Liping, Zheng Weiqiang, et al. Identification and localization of walnut varieties based on YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 167-172.
[12] 何颖, 陈丁号, 彭琳. 基于改进YOLOv5模型的经济林木虫害目标检测算法研究[J]. 中国农机化学报, 2022, 43(4): 106-115.
He Ying, Chen Dinghao, Peng Lin. Research on object detection algorithm of economic forestry pests based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 106-115.
[13] 王新彦, 易政洋. 基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J]. 中国农机化学报, 2023, 44(3): 171-176.
Wang Xinyan, Yi Zhengyang. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176.
[14] 王根, 江晓明, 黄峰, 等. 基于改进YOLOv3网络模型的茶草位置检测算法[J]. 中国农机化学报, 2023, 44(3): 199-207.
Wang Gen, Jiang Xiaoming, Huang Feng, et al. An algorithm for localizing tea bushes and green weeds based on improved YOLOv3 network model [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 199-207.
[15] Ying B, Xu Y, Zhang S, et al. Weed detection in images of carrot fields based on improved YOLOv4[J]. Traitement du Signal, 2021, 38(2).
[16] Zhu H, Zhang Y, Mu D, et al. YOLOX‑based blue laser weeding robot in corn field [J]. Frontiers in Plant Science, 2022, 13: 1017803.
[17] Yano I H, Alves J R ,Santiago W E, et al. Identification of weeds in sugarcane fields through images taken by UAV and random forest classifier [J]. IFAC-PapersOnLine, 2016, 49(16): 415-420.
[18] 陈益方, 张上, 冉秀康, 等. 基于改进YOLOv8的SAR图像飞机目标检测算法[J]. 电讯技术, 2024, 64(8): 1206-1212.
[19] 燕红文, 刘振宇, 崔清亮, 等. 基于改进Tiny—YOLO模型的群养生猪脸部姿态检测[J]. 农业工程学报, 2019, 35(18): 169-179.
[20] 尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学报, 2022, 38(9): 222-229.
|