[1] 顾阳,刘瑾,刘春沐阳.中国茶业的使命担当[N].经济日报,2022-06-09(001).
[2] 袁海波,滑金杰,邓余良,等.基于YJY-2型鲜叶分级机的机采茶叶分级分类工艺优化[J].农业工程学报,2016,32(6):276-282.
Yuan Haibo, Hua Jinjie, Deng Yuliang, et al. Optimization of grading and classification technology for machine picking leaves based on YJY-2 type classifier [J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(6):276-282.
[3] 胡永光,李建钢,陆海燕,等.等直径滚筒式茶鲜叶分级机设计与试验[J].农业机械学报,2015,46 (S1):116-121.
Hu Yongguang, Li Jiangang, Lu Haiyan, et al. Design and experiment of equantdiameter roller screening machine for fresh tea leaves [J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46 (S1):116-121.
[4] 王荣扬.柔性片状物料气固耦合数值计算及机采茶鲜叶分选装置试验研究[D].杭州:浙江理工大学,2020.
Wang Rongyang. Numerical simulations of gassolid coupling mechanism of flexible flaky materials and experimental studies of the sorting equipment for machineplucked fresh tea leaves [D].Hangzhou: Zhejiang SciTech University, 2020.
[5] 张俊宁,毕泽洋,闫英,等.基于注意力机制与改进YOLO的温室番茄快速识别[J].农业机械学报,2023,54(5):236-243.
Zhang Junning, Bi Zeyang, Yan Ying, et al. Fast recognition of greenhouse tomato targets based on attention mechanism and improved YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54 (5):236-243.
[6] 张帆,郭思媛,任方涛,等.基于改进YOLOv3的玉米叶片气孔自动识别与测量方法[J].农业机械学报,2023,54(2):216-222.
Zhang Fan, Guo Siyuan, Ren Fangtao, et al. Automatic identification and measurement of maize leaves stomata based on YOLOv3 [J].Transactions of the Chinese Society for Agricultural Machinery, 2023,54(2):216-222.
[7] 胡和平,吴明晖,洪孔林,等.基于改进YOLOv5s的茶叶嫩芽分级识别方法[J].江西农业大学学报, 2023,45(5):1261-1272.
Hu Heping, Wu Minghui, Hong Konglin, et al. Classification and recognition method for tea buds based on improved YOLOv5s [J].Acta Agriculturae Universitatis Jiangxiensis,2023,45(5):1261-1272.
[8] 方梦瑞,吕军,阮建云,等.基于改进YOLOv4—tiny的茶叶嫩芽检测模型[J].茶叶科学,2022, 42(4):549-560.
Fang Mengrui, Lü Jun, Ruan Jianyun, et al. Tea buds detection model using improved YOLOv4—tiny [J].Journal of Tea Science,2022,42(4):549-560.
[9] Li J, Li J H, Zhao X, et al. Lightweight detection networks for tea bud on complex agricultural environment via improved YOLOv4 [J].Computers and Electronics in Agriculture,2023, 211:107955.
[10] Wang S Y, Wu D S, Zheng X Y. TBC—YOLOv7: A refined YOLOv7—based algorithm for tea bud grading detection [J].Frontiers in Plant Science, 2023,14: 1223410.
[11] GH/T 1115—2015, 西湖龙井茶[S].
[12] 何斌,张亦博,龚健林,等.基于改进YOLOv5的夜间温室番茄果实快速识别[J].农业机械学报,2022,53(5):201-208.
He Bin, Zhang Yibo, Gong Jianlin, et al. Fast recognition of tomato fruit in greenhouse at night based on improved YOLOv5[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022,53(5):201-208.
[13] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile Network design [D]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2021:13708-13717.
[14] 马宏兴,董凯兵,王英菲,等.基于改进YOLOv5s的轻量化植物识别模型研究[J].农业机械学报,2023,54(8):267-276.
Ma Hongxing, Dong Kaibing, Wang Yingfei, et al. Lightweight plant recognition model based on improved YOLOv5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8):267-276.
[15] Yang M K, Yu K, Zhang C,et al. Dense ASPP for semantic segmentation in street scenes [D]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:3684-3692.
[16] Tan M X, Pang R M, Le Q V. EfficientDet:Scalable and efficient object detection [D]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:10778-10787.
|