[1] 毛梓聿. 西藏青稞生产影响因素及对策研究[J]. 山西农经, 2023(7): 135-138.
[2] 涂智潇. 基于计算机视觉的农作物病虫害检测系统[D]. 武汉: 中南财经政法大学, 2020.
[3] 朱圣盼. 基于计算机视觉技术的植物病害检测方法的研究[D]. 杭州: 浙江大学, 2007.
[4] 宋仕月, 陈政羽, 郑一凡, 等. 深度学习在农业病虫害智能识别方面的研究进展[J]. 智慧农业导刊, 2023, 3(4): 1-4.
Song Shiyue, Chen Zhengyu, Zheng Yifan, et al. Research progress of deep learning in intelligent identification of agricultural diseases and insect pests [J]. Journal of Smart Agriculture, 2023, 3(4): 1-4.
[5] 文静. 算力就是生产力[N]. 韶关日报, 2022-05-30(A01).
[6] 张中伟, 陈浩. 基于边缘计算的人脸识别模型研究[J]. 中国电子科学研究院学报, 2023, 18(4): 363-371.
Zhang Zhongwei, Chen Hao. Research on face recognition model based on edge computing [J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(4): 363-371.
[7] 杭立. 基于机器学习和图像处理技术的病虫害预测[D]. 银川: 宁夏大学, 2018.
[8] 蒋龙泉, 鲁帅, 董文彧, 等. 基于SVM机器学习的植物病虫害检测方法[P]. 中国专利: CN102915446A, 2013-02-06.
[9] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[10] Girshick R. Fast R—CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[11] Ren S, He K, Girshick R, et al. Faster R—CNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28: 91-99.
[12] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bagoffreebies sets new stateoftheart for realtime object detectors [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[13] 王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLOv4的荔枝病虫害检测模型[J]. 农业机械学报, 2023, 54(5):227-235.
Wang Weixing, Liu Zeqian, Gao Peng, et al. Detection of litchi diseases and insect pests based on improved YOLOv4 model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 227-235.
[14] 李子茂, 刘恋冬, 夏梦, 等. 基于深度学习的月季多叶片病虫害检测研究[J]. 中国农机化学报, 2021, 42(8): 169-176.
Li Zimao, Liu Liandong, Xia Meng, et al. Detection of rose diseases and insect pests based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 169-176.
[15] 郭伟, 党梦佳, 贾箫, 等. 基于深度学习的小麦条锈病病害等级识别[J]. 华南农业大学学报, 2023, 44(4):604-612.
Guo Wei, Dang Mengjia, Jia Xiao, et al. Grade classification of wheat stripe rust disease based on deep learning [J]. Journal of South China Agricultural University, 2023, 44(4): 604-612.
[16] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [J]. arXiv preprint arXiv: 2010.11929, 2020.
[17] Liu X, Peng H, Zheng N, et al. Efficientvit: Memory efficient vision transformer with cascaded group attention [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14420-14430.
[18] Chollet F. Xception: Deep learning with depthwise separable convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[19] Vaswani A. Attention is all you need [J]. arXiv preprint arXiv: 1706.03762, 2017.
[20] Tong Z, Chen Y, Xu Z, et al. Wise—IoU:Bounding box regression loss with dynamic focusing mechanism [J]. arXiv preprint arXiv: 2301.10051, 2023.
(上接第161页)
[18] Talaat F M, Zain Eldin H. An improved fire detection approach based on YOLOv8 for smart cities [J]. Neural Computing and Applications, 2023, 35(28): 20939-20954.
[19] Wang G, Chen Y, An P, et al. UAV—YOLOv8: A smallobjectdetection model based on improved YOLOv8 for UAV aerial photography scenarios [J]. Sensors, 2023, 23(16): 7190.
[20] LIN T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context [M]. Computer Vision—ECCV 2014. Cham: Springer International Publishing, 2014:740-755.
[21] 陈益方, 张上, 冉秀康,等. 基于改进YOLOv8的SAR图像飞机目标检测算法[J]. 电讯技术, 2024(8): 1206-1212.
Chen Yifang, Zhang Shang, Ran Xiukang, et al. An aircraft target detection algorithm based on improved YOLOv8 in SAR image [J]. Telecommunication Engineering, 2024(8): 1206-1212.
|