[ 1 ] Khan A I, Quadri s MK, Banday S, et al. Deep diagnosis: A real‑time apple leaf disease detection system based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 198: 107093.
[ 2 ] Ding R, Qiao Y, Yang X, et al. Improved resnet based apple leaf diseases identification [J]. IFAC‑PapersOnLine, 2022, 55(32): 78-82.
[ 3 ] Dutot M, Nelson L M, Tyson R C. Predicting the spread of postharvest disease in stored fruit, with application to apples [J]. Postharvest Biology and Technology, 2013, 85: 45-56.
[ 4 ] Sarker I H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions [J]. SN Computer Science, 2021, 2(6): 420.
[ 5 ] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[ 6 ] Girshick R. Fast R—CNN [C]. 2015 IEEE International Conference on Computer Vision (ICCV) 2015: 1440-1448.
[ 7 ] Ren S, He K, Girshick R, et al. Faster R—CNN: Towards real‑time object detection with region proposal networks [J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[ 8 ] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real‑time object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[ 9 ] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Computer Vision‑ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11-14, 2016, Proceedings, part I 14. Springer International Publishing, 2016: 21-37.
[10] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[11] 曹跃腾, 朱学岩, 赵燕东, 等. 基于改进ResNet的植物叶片病虫害识别[J]. 中国农机化学报, 2021, 42(12): 175-181.
Cao Yueteng, Zhu Xueyan, Zhao Yandong, et al. Recognition of plant leaf diseases and insect pests based on improved ResNet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 175-181.
[12] 宋中山, 汪进, 郑禄, 等. 基于二值化的Faster R—CNN柑橘病虫害识别研究[J]. 中国农机化学报, 2022, 43(6): 150-158.
Song Zhongshan, Wang Jin, Zheng Lu, et al. Research on citrus pest identification based on Binary Faster R—CNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 150-158.
[13] 徐会杰, 黄仪龙, 刘曼. 基于改进YOLOv3模型的玉米叶片病虫害检测与识别研究[J]. 南京农业大学学报, 2022, 45(6): 1276-1285.
[14] Zhong Y, Zhao M. Research on deep learning in apple leaf disease recognition [J]. Computers and Electronics in Agriculture, 2020, 168: 105146.
[15] Sun H, Xu H, Liu B, et al. Mean—SSD: A novel real‑time detector for apple leaf diseases using improved light‑weight convolutional neural networks [J]. Computers and Electronics in Agriculture, 2021, 189: 106379.
[16] 徐艳蕾, 孔朔琳, 陈清源, 等. 基于Transformer的强泛化苹果叶片病害识别模型[J]. 农业工程学报, 2022, 38(16): 198-206.
Xu Yanlei, Kong Shuolin, Chen Qingyuan, et al. Model for identifying strong generalization apple leaf disease using Transformer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 198-206.
[17] Zhu R, Zou H, Li Z, et al. Apple—Net: A model based on improved YOLOv5 to detect the apple leaf diseases [J]. Plants, 2023, 12(1): 169.
[18] Zhu X, Li J, Jia R, et al. Lad—Net: A novel light weight model for early apple leaf pests and diseases classification [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20(2): 1156-1169.
[19] Zhang Y, Zhou G, Chen A, et al. A precise apple leaf diseases detection using BCTNet under unconstrained environments [J]. Computers and Electronics in Agriculture, 2023, 212: 108132.
[20] Jiang Y, Tong W. Improved lightweight identification of agricultural diseases based on MobileNetV3 [C]. CAIBDA 2022; 2nd International Conference on Artificial Intelligence, Big Data and Algorithms. VDE, 2022: 1-5.
[21] Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.
[22] Liu Y, Shao Z, Hoffmann N. Global attention mechanism: Retain information to enhance channel‑spatial interactions [J]. arXiv preprint arXiv: 2112.05561, 2021.
[23] Wang J, Chen K, Xu R, et al. Carafe: Content‑aware reassembly of features [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.
[24] Chen J, Kao S, He H, et al. Run, don't walk: Chasing higher FLOPS for faster neural networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[25] Yang Q, Duan S, Wang L. Efficient identification of apple leaf diseases in the wild using convolutional neural networks [J]. Agronomy, 2022, 12(11): 2784.
[26] Selvaraju RR, Cogswell M, Das A, et al. Grad—CAM: Visual explanations from deep networks via gradient‑based localization [J]. International Journal of Computer Vision, 2020, 128(2): 336.
|