[ 1 ] 邓源喜, 张姚瑶, 董晓雪, 等. 花生营养保健价值及在饮料工业中的应用进展[J]. 保鲜与加工, 2018, 18(6): 166-169, 174.
Deng Yuanxi, Zhang Yaoyao, Dong Xiaoxue, et al. Nutritional and health value of peanut and its utilization in beverage industry [J]. Storage and Process, 2018, 18(6): 166-169, 174.
[ 2 ] 刘敏基, 谢焕雄, 王建楠, 等. 栅条滚筒式花生分级机的优化设计与试验[J]. 中国农机化学报, 2014, 35(2): 210-212.
Liu Minji, Xie Huanxiong, Wang Jiannan, et al. Optimal design and experimental study on peanut sorting machine of grid cylinder [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2): 210-212.
[ 3 ] Wang J, Yang W, Walker L, et al. Identification of peanut pods with three or more kernels by machine vision and neural network [J]. International Journal of Food Engineering, 2014, 10(1): 97-102.
[ 4 ] Li Z, Niu B, Peng F, et al. Classification of peanut images based on multi‑features and SVM [J]. IFAC-PapersOnLine, 2018, 51(17): 726-731.
[ 5 ] 张瑞青, 李张威, 郝建军, 等. 基于迁移学习的卷积神经网络花生荚果等级图像识别[J]. 农业工程学报, 2020, 36(23): 171-180.
Zhang Ruiqing, Li Zhangwei, Hao Jianjun, et al. Image recognition of peanut pod grades based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 171-180.
[ 6 ] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[ 7 ] 张伏, 陈自均, 鲍若飞, 等. 基于改进型 YOLOv4—LITE 轻量级神经网络的密集圣女果识别[J]. 农业工程学报, 2021, 37(16): 270-278.
Zhang Fu, Chen Zijun, Bao Ruofei, et al. Recognition of dense cherry tomatoes based on improved YOLOv4—LITE lightweight neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 270-278.
[ 8 ] 杨坚, 钱振, 张燕军, 等. 基于改进 YOLOv4—tiny 的复杂环境下番茄实时识别[J]. 农业工程学报, 2022, 38(9): 215-221.
Yang Jian, Qian Zhen, Zhang Yanjun, et al. Real‑time recognition of tomatoes in complex environments based on improved YOLOv4—tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 215-221.
[ 9 ] Gai R, Chen N, Yuan H. A detection algorithm for cherry fruits based on the improved YOLO—v4 model [J]. Neural Computing and Applications, 2023, 35(19): 13895-13906.
[10] Xiang S, Wang S, Xu M, et al. YOLO POD: A fast and accurate multi‑task model for dense Soybean Pod counting [J]. Plant Methods, 2023, 19(1): 8.
[11] Novtahaning D, Shah H A, Kang J M. Deep learning ensemble‑based automated and high‑performing recognition of coffee leaf disease [J]. Agriculture, 2022, 12(11): 1909.
|