[ 1 ] 李大湘, 曾小通, 刘颖. 耦合全局与局部特征的苹果叶部病害识别模型[J]. 农业工程学报, 2022, 38(16): 207-214.
Li Daxiang, Zeng Xiaotong, Liu Ying. Apple leaf disease identification model by coupling global and patch features [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 207-214.
[ 2 ] Sun H, Xu H, Liu B, et al. MEAN—SSD: A novel real‑time detector for apple leaf diseases using improved light‑weight convolutional neural networks [J]. Computers and Electronics in Agriculture, 2021, 189: 106379.
[ 3 ] 王昌龙, 张远东, 缪宏, 等. 双通道卷积神经网络在南瓜病害识别上的应用[J]. 计算机工程与应用, 2021, 57(5): 183-189.
Wang Changlong, Zhang Yuandong, Miao Hong, et al. Application of double channel convolutional neural network in pumpkin diseases identification [J]. Computer Engineering and Applications, 2021, 57(5): 183-189.
[ 4 ] 张国忠, 吕紫薇, 刘浩蓬. 基于改进DenseNet和迁移学习的荷叶病虫害识别模型[J]. 农业工程学报, 2023, 39(8): 188-196.
Zhang Guozhong, Lü Ziwei, Liu Haopeng. Model for identifying lotus leaf pests and diseases using improved DenseNet and transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8): 188-196.
[ 5 ] 戴久竣, 马肄恒. 基于改进残差网络的葡萄叶片病害识别[J]. 江苏农业科学, 2023, 51(5): 208-215.
Dai Jiujun, Ma Yiheng. Grape leaf disease identification based on improved residual network [J]. Jiangsu Agricultural Sciences, 2023, 51(5): 208-215.
[ 6 ] Zeng W H, Li M. Crop leaf disease recognition based on self‑attention convolutional neural network [J]. Computers and Electronics in Agriculture, 2020, 17(2): 1023-1035.
[ 7 ] Fan X, Luo P, Mu Y, et al. Leaf image‑based plant disease identification using transfer learning and feature fusion [J]. Computers and Electronics in Agriculture, 2022, 19(6): 1068-1075.
[ 8 ] Elfatimi E, Eryigit R, Elfatimi L. Beans leaf diseases classification using mobilenet models [J]. IEEE Access, 2022, 10: 9471-9482.
[ 9 ] Zhou Y, Fu C, Zhai Y, et al. Identification of rice leaf disease using improved ShuffleNet V2 [J]. Computers, Materials & Continua, 2023, 75(2): 4501-4517.
[10] 李恒, 南新元. 一种基于GhostNet的绿色类圆果实识别方法[J]. 江苏农业学报, 2023, 39(3): 724-731.
Li Heng, Nan Xinyuan. A green round‑like fruits identification method based on GhostNet [J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(3): 724-731.
[11] 贾璐, 叶中华. 基于注意力机制和特征融合的葡萄病害识别模型[J]. 农业机械学报, 2023, 54(7): 223-233.
Jia Lu, Ye Zhonghua. Grape disease recognition model based on attention mechanism and feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 223-233.
[12] 曹藤宝, 张欣. 融合空间注意力机制和DenseNet的玉米病害分类方法[J]. 无线电工程, 2022, 52(10): 1710-1717.
[13] Bhuyan P, Singh PK, Das SK. Res4Net—CBAM: A deep CNN with convolution block attention module for tea leaf disease diagnosis [J]. Multimedia Tools and Application, 2024, 80(13): 48925-48947.
[14] 胡玲艳, 周婷, 许巍. 面向番茄病害识别的改进型SqueezeNet轻量级模型[J]. 郑州大学学报(理学版), 2022, 54(4): 71-77.
Hu Lingyan, Zhou Ting, Xu Wei. An improved SqueezeNet lightweight model for tomato disease recognition [J]. Journal of Zhengzhou University (Natural Science Edition), 2022, 54(4): 71-77.
[15] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[16] Sandler M, Howard A, Zhu M, et al. MobileNetv2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
|