[1] 胡壮壮, 王路路, 姜雪冰, 等. 我国大豆产业发展现状分析及对策[J]. 大豆科技, 2023(4): 1-11.
Hu Zhuangzhuang, Wang Lulu, Jiang Xuebing, et al. Analysis and countermeasure of soybean industry development status in China [J]. Soybean Science & Technology, 2023(4): 1-11.
[2] 陈昭, 杨潇垒, 吴倩, 等. 不同外源蔗糖浓度对带状复合种植大豆光合生理及产量形成的影响[J]. 四川农业大学学报, 2023, 41(5): 781-790,819.
Chen Zhao, Yang Xiaolei, Wu Qian, et al. Effect of different exogenous sucrose concentrations on photosynthetic physiology and yield formation in soybean grown in ribbon complex [J]. Journal of Sichuan Agricultural University, 2023, 41(5):781-790,819.
[3] 谭序光, 谭黎光, 杨绍锷. 基于黑白扫描图像的叶面积测量方法[J]. 广西农学报, 2022, 37(6): 46-52.
Tan Xuguang, Tan Liguang, Yang Shaoe. Leaf area measurement method based on blackwhite scanning image [J]. Journal of Guangxi Agriculture, 2022, 37(6): 46-52.
[4] 张万红. 基于图像分割的苹果叶片几何参数计算[J]. 中国农业大学学报, 2018, 23(8): 101-108.
Zhang Wanhong. Calculating geometric parameters of apple leaf based on the image segmentation [J]. Journal of China Agricultural University, 2018, 23(8): 101-108.
[5] 汤晓东, 刘满华, 赵辉, 等. 复杂背景下的大豆叶片识别[J]. 电子测量与仪器学报, 2010, 24(4): 385-390.
Tang Xiaodong, Liu Manhua, Zhao Hui, et al. Soybean leaves recognition of images with complicated background [J]. Journal of Electronic Measurement and Instrumentation, 2010, 24(4): 385-390.
[6] 孙红, 李松, 李民赞, 等. 农业信息成像感知与深度学习应用研究进展[J].农业机械学报, 2020, 51(5): 1-17.
Sun Hong, Li Song, Li Minzan, et al. Research progress of image sensing and deep learning in agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 1-17.
[7] 傅隆生, 宋珍珍, Zhang Xin, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120.
Fu Longsheng, Song Zhenzhen, Zhang Xin, et al. Applications and research progress of deep learning in culture [J]. Journal of China Agricultural University, 2020, 25(2): 105-120.
[8] 熊俊涛, 戴森鑫, 区炯洪, 等. 基于深度学习的大豆生长期叶片缺素症状检测方法[J]. 农业机械学报, 2020, 51(1): 195-202.
Xiong Juntao, Dai Senxin, Ou Jonghong, et al. Leaf deficiency symptoms detection method of soybean based on deep learning [J].Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 195-202.
[9] Chen Y T, Chen S F. Localizing plucking points of tea leaves using deep convolutional neural networks [J]. Computers and Electronics in Agriculture, 2020, 171: 105298.
[10] Wang T, Zhang K, Zhang W, et al. Tea picking point detection and location based on Mask R—CNN [J]. Information Processing in Agriculture, 2023, 10(2): 267-275.
[11] 王菁, 范晓飞, 赵智慧, 等. 基于YOLO算法的不同品种枣自然环境下成熟度识别[J]. 中国农机化学报, 2022, 43(11): 165-171.
Wang Jing, Fan Xiaofei, Zhao Zhihui, et al. Maturity identification of different jujube variations under natural environment based on YOLO algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 165-171.
[12] 范天浩, 顾寄南, 王文波, 等. 基于改进YOLOv5s的轻量化金银花识别方法[J]. 农业工程学报, 2023, 39(11): 192-200.
Fan Tianhao, Gu Jinan, Wang Wenbo, et al. Lightweight honeysuckle recognition method based on improved YOLOv5s [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(11): 192-200.
[13] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Computer VisionECCV, 2016: 21-37.
[14] Xiao Y, Tian Z, Yu J, et al. A review of object detection based on deep learning [J]. Multimedia Tools and Applications, 2020, 79: 23729-23791.
|