[1] Tacconi G, Michelotti V, Cacioppo O, et al. Kiwifruit pollination: The interaction between pollen quality, pollination systems and flowering stage [J]. Journal of Berry Research, 2016, 6(4): 417-426.
[2] Fu L, Feng Y, Wu J, et al. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3—tiny model [J]. Precision Agriculture, 2021, 22(3): 754-776.
[3] Li G, Fu L, Gao C, et al. Multiclass detection of kiwifruit flower and its distribution identification in orchard based on YOLOv5l and euclidean distance [J]. Computers and Electronics in Agriculture, 2022, 201: 107342.
[4] 赵春江, 文朝武, 林森, 等. 基于级联卷积神经网络的番茄花期识别检测方法[J]. 农业工程学报, 2020, 36(24): 143-152.
Zhao Chunjiang, Wen Chaowu, Lin Sen, et al. Tomato florescence recognition and detection method based on cascaded neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 143-152.
[5] 付苗苗, 邓淼磊, 张德贤. 深度神经网络图像目标检测算法综述[J]. 计算机系统应用, 2022, 31(7): 35-45.Fu Miaomiao, Deng Miaolei, Zhang Dexian. Survey on deep netural network image target detection algorithms [J]. Computer Systems & Applications, 2022, 31(7):35-45.
[6] 尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学报, 2022, 38(9): 222-229.
Shang Yuying, Zhang Qianru, Song Huaibo. Application of deep learning based on YOLOv5s to apple flower detection in natural scenes [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229.
[7] Patel S. Marigold flower blooming stage detection in complex scene environment using Faster R—CNN with data augmentation [J]. International Journal of Advanced Computer Science and Applications, 2023, 14(3): 676-684.
[8] Fan S, Yu H, Lu D, et al. CSCC: Convolution split compression calculation algorithm for deep neural network [J]. IEEE Access, 2019, 7: 71607-71615.
[9] 易振通, 吴瑰, 官端正, 等. 轻量化卷积神经网络的研究综述[J]. 工业控制计算机, 2022, 35(10): 109-111, 114.Yi Zhentong, Wu Gui, Guan Duanzheng, et al. Survey of research on lightweight convolutional neural networks [J]. Industrial Control Computer, 2022, 35(10): 109-111, 114.
[10] 李江昀, 赵义凯, 薛卓尔, 等. 深度神经网络模型压缩综述[J]. 工程科学学报, 2019, 41(10): 1229-1239.Li Jiangyun, Zhao Yikai, Xue Zhuoer, et al. A survey of model compression for deep netural networks [J]. Chinese Journal of Engineering, 2019, 41(10):1229-1239.
[11] 邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638-1673.〖JP2〗Shao Renrong, Liu Yuang, Zhang Wei, et al. A survey of knowledge distillation in deep learning [J]. Chinese Journal of Computers, 2022, 45(8): 1638-1673.〖JP〗
[12] 高晗, 田育龙, 许封元, 等. 深度学习模型压缩与加速综述[J]. 软件学报, 2021, 32(1): 68-92.〖JP2〗Gao Han, Tian Yulong, Xu Fengyuan, et al. Survey of deep learning model compression and acceleration [J]. Journal of Software, 2021, 32(1): 68-92.〖JP〗
[13] 罗志聪, 李鹏博, 宋飞宇, 等. 嵌入式设备的轻量化百香果检测模型[J]. 农业机械学报, 2022, 53(11): 262-269, 322.
Luo Zhicong, Li Pengbo, Song Feiyu, et al. Lightweight passion fruit detection model based on embedded device [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 262-269, 322.
[14] Lu J, Lin W, Chen P, et al. Research on lightweight citrus flowering rate statistical model combined with anchor frame clustering optimization [J]. Sensors, 2021, 21(23): 7929.
[15] 闫彬, 樊攀, 王美茸, 等. 基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报, 2022, 53(9): 28-38, 59.
Yan Bin, Fan Pan, Wang Meirong, et al. Realtime apple picking pattern recognition for picking robot based on improved YOLOv5m [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 28-38, 59.
[16] Tang H, Liang S, Yao D, et al. A visual defect detection for optics lens based on the YOLOv5—C3CA—SPPF network model [J]. Optics Express, 2023, 31(2): 2628-2643.
[17] 徐艳蕾, 何润, 翟钰婷, 等. 基于轻量卷积网络的田间自然环境杂草识别方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2304-2312.Xu Yanlei, He Run, Zhai Yuting, et al. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2304-2312.
[18] Yang Z, Li L, Luo W. PDNet: Improved YOLOv5 nondeformable disease detection network for Asphalt pavement [J]. Computational Intelligence and Neuroscience, 2022.
[19] 苏俊楷, 段先华, 叶赵兵. 改进YOLOv5算法的玉米病害检测研究[J]. 计算机科学与探索, 2013, 17(4):933-941.Su Junkai, Duan Xianhua, Ye Zhaobing. Research on corn disease detection based on improved YOLOv5 algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2013, 17(4): 933-941.
[20] Shang Y, Xu X, Jiao Y, et al. Using lightweight deep learning algorithm for realtime detection of apple flowers in natural environments [J]. Computers and Electronics in Agriculture, 2023, 207: 107765.
[21] Liu C, Sui H, Wang J, et al. Realtime groundlevel building damage detection based on lightweight and accurate YOLOv5 using terrestrial images [J]. Remote Sensing, 2022, 14(12): 2763.
[22] Wan F, Sun C, He H, et al. YOLO—LRDD: A lightweight method for road damage detection based on improved YOLOv5s [J]. Eurasip Journal on Advances in Signal Processing, 2022(1): 98.
[23] Ma N, Zhang X, Zheng H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision, 2018: 116-131.
[24] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceeding of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1577-1586.
[25] Dou X, Wang T, Shao S. A lightweight YOLOv5 model integrating GhostNet and attention mechanism [C]. 2023 4th International Conference on Computer Vision, Image and Deep Learning. IEEE, 2023: 348-352.
[26] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Procedings of the European Conferenee on Computer Vision, 2018: 3-19.
[27] 孙丰刚, 王云露, 兰鹏, 等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179.
Sun Fenggang, Wang Yunlu, Lan Peng, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022,38(11): 171-179.
[28] 余贤海, 孔德义, 谢晓轩, 等. 基于深度学习的番茄授粉机器人目标识别与检测[J]. 农业工程学报, 2022, 38(24): 129-137.
Yu Xianhai, Kong Deyi, Xie Xiaoxuan, et al. Deep learningbased target recognition and detection for tomato pollination robots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 129-137.
|