[1] 中共中央,国务院.关于做好2023年全面推进乡村振兴重点工作的意见[EB/OL].https://www.gov.cn/zhengce/2023-02/13/content_5741370.htm,2023-02-13.
[2] 陆俊尧. 稻田杂草互作对水稻产量的影响及其生态经济阈值研究[D].上海:华东师范大学,2019.
Lu Junyao. Interaction effects of multiplespecies paddy field weeds on rice yield and the ecoeconomic thresholds [D].Shanghai: East China Normal University,2019.
[3] 叶婷,马宏娟,卢锐,等.人工智能在智慧农业中的应用——以数据挖掘与机器学习为例[J].智慧农业导刊,2022,2(18):27-29,32.
[4] 赵小虎,李晓.基于语义分割的农作物病害识别综述研究[J].现代计算机,2021(18):122-126.
Zhao Xiaohu, Li Xiao. Survey of crop disease recognition based on semantic segmentation [J].Modern Computer,2021(18):122-126.
[5] 蒋双帅. 基于深度学习的小麦倒伏研究[D].泰安:山东农业大学,2022.
Jiang Shuangshuai. Wheat lodging analysis based on deep learning [D]. Taian: Shandong Agricultural University,2022.
[6] 张红. 基于语义分割神经网络的农业环境道路识别[D].重庆:重庆邮电大学,2022.
Zhang Hong. Agricultural environment road recognition based on semantic segmentation neural network [D].Chongqing: Chongqing University of Posts and Telecommunications,2022.
[7] 毛万菁,阮炬全,刘朔.基于注意力机制的改进U—Net草莓病害语义分割[J].计算机系统应用,2023,32(6):251-259.
Mao Wanjing, Ruan Juquan, Liu Shuo. Improved U—Net based on attention mechanism in semantic segmentation of strawberry diseases [J].Computer Systems & Applications,2023,32(6):251-259.
[8] 李倩楠,张杜娟,潘耀忠,等.MPSPNet和U—Net网络下山东省高分辨耕地遥感提取[J].遥感学报,2023,27(2):471-491.
Li Qiannan, Zhang Dujuan, Pan Yaozhong, et al. Highresolution cropland extraction in Shandong province using MPSPNet and U—Net network [J].National Remote Sensing Bulletin,2023,27(2):471-491.
[9] He X, Zhou Y, Zhao J, et al. Swin transformer embedding U—Net for remote sensing image semantic segmentation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[10] Nawaz M, Nazir T, Masood M, et al. Melanoma segmentation: A framework of improved DenseNet77 and U—NET convolutional neural network [J]. International Journal of Imaging Systems and Technology, 2022, 32(6): 2137-2153.
[11] Sanderson E, Matuszewski B J. FCN—transformer feature fusion for polyp segmentation [C]. Annual Conference on Medical Image Understanding and Analysis. Cham: Springer International Publishing, 2022: 892-907.
[12] Wang Z, Gao X, Wu R, et al. Fully automatic image segmentation based on FCN and graph cuts [J]. Multimedia Systems, 2022, 28(5): 1753-1765.
[13] Yu L, Zeng Z, Liu A, et al. A lightweight complexvalued DeepLabv3+ for semantic segmentation of PolSAR image [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 930-943.
[14] Atik S O, Atik M E, Ipbuker C. Comparative research on different backbone architectures of DeepLabV3+ for building segmentation [J]. Journal of Applied Remote Sensing, 2022, 16(2): 024510-024510.
[15] Rani A A, Prasanna K L, Ashraf M S, et al. Classification for crop pest on U—SegNet [C]. 2023 7th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2023: 926-932.
[16] Yu C M, Chen K C, Chang C T, et al. SegNet: A network for detecting deepfake facial videos [J]. Multimedia Systems, 2022, 28(3): 793-814.
[17] 徐武,文聪,唐文权,等.基于Lab颜色空间的融合改进二进制量子PSO和Otsu优化算法[J].计算机应用与软件,2022,39(6):265-268,349.
Xu Wu, Wen Cong, Tang Wenquan, et al. Improved binary quantum PSO and Otsu optimization algorithm based on Lab color space [J].Computer Applications and Software,2022,39(6):265-268,349.
[18] Oukil S, Kasmi R, Mokrani K, et al. Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images [J]. Skin Research and Technology, 2022, 28(2): 203-211.
[19] Ramadan R, Aly S. CU—Net: A new improved multiinput color U—Net model for skin lesion semantic segmentation [J]. IEEE Access, 2022, 10: 15539-15564.
[20] 侯开纪,叶海洋,张莆林,等.基于SRGAN的图像超分辨率方法研究[J].现代计算机,2023,29(3):69-72.
Hou Kaiji, Ye Haiyang, Zhang Pulin, et al. Research on image superresolution methodbased on SRGAN[J].Modern Computer,2023,29(3):69-72.
[21] 刘嵩山,王华军,李特,等.改进SRGAN的图像超分辨率算法[J].西华大学学报(自然科学版),2022,41(5):84-90,103.
Liu Songshan, Wang Huajun, Li Te, et al. Improved image superresolution algorithm for generating adversarial network [J]. Journal of Xihua University (Natural Science Edition),2022,41(5):84-90,103.
[22] Zhong Z, Chen Y, Hou S, et al. Superresolution reconstruction method of infrared images of composite insulators with abnormal heating based on improved SRGAN [J]. IET Generation, Transmission & Distribution, 2022, 16(10): 2063-2073.
[23] Huang Y, Wang Q, Omachi S. Rethinking degradation: Radiograph superresolution via AID—SRGAN [C]. International Workshop on Machine Learning in Medical Imaging. Cham: Springer Nature Switzerland, 2022: 43-52.
[24] 秦浩,熊凌,陈琳, 等.基于CBAM—DDcGAN的锌渣红外与可见光图像融合[J].武汉科技大学学报,2023,46(3):216-224.
Qin Hao, Xiong Ling, Chen Lin, et al. Infrared and visible images fusion of zinc slag based on CBAM—DDcGAN [J]. Journal of Wuhan University of Science and Technology,2023,46(3):216-224.
[25] 张文景,蒋泽中,秦立峰.基于弱监督下改进的CBAM—ResNet18模型识别苹果多种叶部病害[J].智慧农业(中英文),2023,5(1):111-121.
Zhang Wenjing, Jiang Zezhong, Qin Lifeng. Identifying multiple apple leaf diseases based on the improved CBAM—ResNet18 model under weak supervision [J].Smart Agriculture,2023,5(1):111-121.
[26] Farag M M, Fouad M, AbdelHamid A T. Automatic severity classification of diabetic retinopathy based on denseNet and convolutional block attention module [J]. IEEE Access, 2022, 10: 38299-38308.
[27] Song S, Yang Z, Goh H H, et al. A novel sky imagebased solar irradiance nowcasting model with convolutional block attention mechanism [J]. Energy Reports, 2022, 8: 125-132.
[28] Rani S V J, Kumar P S, Priyadharsini R, et al. Automated weed detection system in smart farming for developing sustainable agriculture [J]. International Journal of Environmental Science and Technology, 2022, 19(9): 9083-9094.
|