[1]
Trstenjak B, Mikac S, Donko D. KNN with TF-IDF based framework for text categorization [J]. Procedia Engineering, 2014, 69: 1356-1364.
[2]
Niwattanakul S, Singthongchai J, Naenudorn E, et al. Using of Jaccard coefficient for keywords similarity [C]. Proceedings of the International Multiconference of Engineers and Computer Scientists. 2013, 1(6): 380-384.
[3]
Robertson S, Zaragoza H. The probabilistic relevance framework: BM25 and beyond [J]. Foundations and Trends in Information Retrieval, 2009, 3(4): 333-389.
[4]
Chi L, Li B, Zhu X. Contextpreserving hashing for fast text classification [C]. Proceedings of the 2014 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2014: 100-108.
[5]
Song J, Huang X, Qin S, et al. A bidirectional sampling based on K-means method for imbalance text classification [C]. 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS). IEEE, 2016: 1-5.
[6]
Feng G, Guo J, Jing B Y, et al. Feature subset selection using naive Bayes for text classification [J]. Pattern Recognition Letters, 2015, 65: 109-115.
[7]
Haddoud M, Mokhtari A, Lecroq T, et al. Combining supervised termweighting metrics for SVM text classification with extended term representation [J]. Knowledge and Information Systems, 2016, 49(3): 909-931.
[8]
Yin W, Schütze H. Convolutional neural network for paraphrase identification [C]. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2015: 901-911.
[9]
Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data [C]. Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, 2013: 2333-2338.
[10]
Melamud O, Goldberger J, Dagan I. context2vec: Learning generic context embedding with bidirectional lstm [C]. Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, 2016: 51-61.
[11]
Yin W, Kann K, Yu M, et al. Comparative study of CNN and RNN for natural language processing [J]. arXiv preprint arXiv:1702.01923, 2017.
[12]
许童羽, 赵冬雪, 周云成, 等. 基于word2vec和Attention-Seq2Seq的水稻病虫害智能问答方法研究[J]. 沈阳农业大学学报, 2019, 50(3): 378-384.
Xu Tongyu, Zhao Dongxue, Zhou Yuncheng, et al. Research on method of intelligent Q & A for rice pests and diseases based on word2vec and Attention-Seq2Seq [J]. Journal of Shenyang Agricultural University, 2019, 50(3): 378-384.
[13]
王郝日钦, 吴华瑞, 冯帅, 等. 基于Attention_DenseCNN的水稻问答系统问句分类[J]. 农业机械学报, 2021, 52(7): 237-243.
Wang Haoriqin, Wu Huarui, Feng Shuai, et al. Classification technology of rice questions in question answer system based on Attention_DenseCNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 237-243.
[14]
梁敬东, 崔丙剑, 姜海燕, 等. 基于word2vec和LSTM的句子相似度计算及其在水稻FAQ问答系统中的应用[J]. 南京农业大学学报, 2018, 41(5): 946-953.
Liang Jingdong, Cui Bingjian, Jiang Haiyan, et al. Sentence similarity computing based on word2vec and LSTM and its application in rice FAQ questionanswering system [J]. Journal of Nanjing Agricultural University, 2018, 41(5): 946-953.
[15]
冯帅, 许童羽, 周云成, 等. 基于深度卷积神经网络的水稻知识文本分类方法[J]. 农业机械学报, 2021, 52(3): 257-264.
Feng Shuai, Xu Tongyu, Zhou Yuncheng, et al. Rice knowledge text classification based on deep convolution neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 257-264.
[16]
Wang X, Wang H, Zhao G, et al. ALBERT over MatchLSTM Network for intelligent questions classification in Chinese [J]. Agronomy, 2021, 11(8): 1530.
[17]
Wang Q, Zhou Y, Ruan T, et al. Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition [J]. Journal of Biomedical Informatics, 2019, 92: 103133.
[18]
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures [J]. Neural Networks, 2005, 18(5-6): 602-610.
[19]
Le C Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural computation, 1989, 1(4): 541-551.
[20]
Xu G, Meng Y, Qiu X, et al. Sentiment analysis of comment texts based on BiLSTM [J]. IEEE Access, 2019, 7: 51522-51532.
[21]
Chen Z, Wang X, Xie X, et al. Coattentive multitask learning for explainable recommendation [C]. TwentyEighth International Joint Conference on Artificial Intelligence, 2019.
|