[1] 李泽华, 马旭, 李秀昊, 等. 水稻栽植机械化技术研究进展[J]. 农业机械学报, 2018, 49(5): 1-20.
Li Zehua, Ma Xu, Li Xiuhao, et al. Research progress of rice transplanting mechanization [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 1-20.
[2] 张洪程, 胡雅杰, 戴其根, 等. 中国大田作物栽培学前沿与创新方向探讨[J]. 中国农业科学, 2022, 55(22): 4373-4382.
Zhang Hongcheng, Hu Yajie, Dai Qigen, et al. Discussions on frontiers and directions of scientific and technological innovation in Chinas field crop cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[3] 庄春, 纪力, 邵文奇, 等. 印刷播种大壮苗育秧技术下水稻机插适宜密度与效果研究[J]. 江苏农业科学, 2019, 47(7): 69-72.
Zhuang Chun, Ji Li, Shao Wenqi, et al. Study on the suitable density and effect of rice machine transplantation with printing and sowing techniques for growing large and strong seedlings [J]. Jiangsu Agricultural Sciences, 2019, 47(7): 69-72.
[4] 钟平, 邵文奇, 徐文静, 等. 印刷播种技术对机插秧苗素质和栽插质量的影响[J]. 金陵科技学院学报, 2014, 30(4): 51-54.
Zhong Ping, Shao Wenqi, Xu Wenjing, et al. The effects of printingsowing technology on seedling and the transplanting quality of mechanical transplanting rice [J]. Journal of Jinling Institute of Technology, 2014, 30(4): 51-54.
[5] 王侨, 刘卉, 杨鹏树, 等. 基于机器视觉的农田地头边界线检测方法[J]. 农业机械学报, 2020, 51(5): 18-27.
Wang Qiao, Liu Hui, Yang Pengshu, et al. Detection method of headland boundary line based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 18-27.
[6] 刘海涛, 伊丽丽, 兰玉彬, 等. 机器视觉在棉花智能打顶领域的应用研究进展[J]. 中国农机化学报, 2021, 42(6): 159-165.
Liu Haitao, Yi Lili, Lan Yubin, et al. Research progress in the application of machine vision in the field of cotton intelligence topping [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 159-165.
[7] Rehman T U, Mahmud M S, Chang Y K, et al. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems [J]. Computers and Electronics in Agriculture, 2019, 156: 585-605.
[8] Bai J, Hao F, Cheng G, et al. Machine visionbased supplemental seeding device for plug seedling of sweet corn [J]. Computers and Electronics in Agriculture, 2021, 188: 106345.
[9] 张亚莉, 肖文蔚, 卢小阳, 等. 基于可见光图像的水稻颖花开花状态检测方法[J]. 农业工程学报, 2021, 37(9): 253-262.
Zhang Yali, Xiao Wenwei, Lu Xiaoyang, et al. Method for detecting rice flowering spikelets using visible light images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 253-262.
[10] 孙俊, 张林, 周鑫, 等. 采用高光谱图像深度特征检测水稻种子活力等级[J]. 农业工程学报, 2021, 37(14): 171-178.
Sun Jun, Zhang Lin, Zhou Xin, et al. Detection of rice seed vigor level by using deep feature of hyperspectral images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 171-178.
[11] 杭艳红, 苏欢, 于滋洋, 等. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J]. 农业工程学报, 2021, 37(9): 64-71.
Hang Yanhong, Su Huan, Yu Ziyang, et al. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71.
[12] 徐建鹏, 王杰, 徐祥, 等. 基于RAdam卷积神经网络的水稻生育期图像识别[J]. 农业工程学报, 2021, 37(8): 143-150.
Xu Jianpeng, Wang Jie, Xu Xiang, et al. Image recognition for different developmental stages of rice by RAdam deep convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 143-150.
[13] Habib M T, Majumder A, Jakaria A Z M, et al. Machine vision based papaya disease recognition [J]. Journal of King Saud UniversityComputer and Information Sciences, 2020, 32(3): 300-309.
|