[1] 汪清焰. 水稻茎秆成分与其力学性能关系的研究[D]. 合肥: 中国科学技术大学, 2019.
Wang Qingyan. Study on the relationship between components and mechanical properties of rice stem [D]. Hefei: University of Science and Technology of China, 2019.
[2] 朱梓弘, 朱同彬, 杨霖, 等. 中国土壤碱解氮含量与影响因子的空间关系研究[J]. 生态环境学报, 2019, 28(11): 2199-2207.
Zhu Zihong, Zhu Tongbin, Yang Lin, et al. The spatial relationship between soil alkelinenitrogen content and environmental factors in China [J]. Ecology and Environmental Sciences, 2019, 28(11): 2199-2207.
[3] 杨艳珍. 土壤检测记录仪与土壤信息管理系统应用研究[D]. 西安: 西安科技大学, 2017.
[4] 郑利芳. 土壤微生物对春玉米地硝态氮阻控措施的响应[D]. 咸阳: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2020.
[5] 刘灿. 长期不同施肥模式对紫色水稻土团聚体有机碳、重金属含量及作物重金属吸收的影响[D]. 重庆: 西南大学, 2020.
[6] 齐海军. 土壤速效养分高光谱检测方法研究[D]. 合肥: 安徽农业大学, 2018.
[7] 李克亮. 标准种植比值指数法的无人机遥感水稻变量施氮决策研究[D]. 广州: 华南农业大学, 2018.
Li Keliang. Variable nitrogen fertilizer management of rice base on ratio index of standard planting in UAV remote sensing [D]. Guangzhou: South China Agricultural University, 2018.
[8] 焦亚鹏. 不同氮磷配施对黄土高原旱作农业区典型农田土壤磷素形态的影响研究[D]. 兰州: 甘肃农业大学, 2020.
[9] 芦俊俊. 基于RapidSCAN与无人机遥感的寒地水稻氮素诊断与精准管理[D]. 北京: 中国农业大学, 2018.
Lu Junjun. RapidSCAN and unmanned aerial vehicle remote sensingbased rice nitrogen status diagnosis and precision management in cold region [D]. Beijing: China Agricultural University, 2018.
[10] 赵刘. 土壤总氮高光谱检测方法研究[D]. 合肥: 安徽农业大学, 2017.
[11] 孙楠. 我国北方典型农田土壤氮动态对施肥的响应及模拟[D]. 北京: 中国农业科学院, 2019.
Sun Nan. Response and simulation of soil nitrogen dynamics to different fertilization in typical farmland of northern China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
[12] 张雨. 基于无人机遥感的水稻氮素营养诊断研究[D]. 哈尔滨: 东北农业大学, 2017.
Zhang Yu. Diagnosis of nitrogen nutrition in rice based on UAV remote sensing [D]. Harbin: Northeast Agricultural University, 2017.
[13] 苗杰, 李斐, 张加康, 等. 紫外分光光度法测定土壤硝态氮校正因数的优化[J]. 华北农学报, 2019, 34(S1): 204-212.
Miao Jie, Li Fei, Zhang Jiakang, et al. Optimization of correction factor of soil nitrate nitrogen by ultraviolet spectrophotometry [J]. Acta Agriculturae BorealiSinica, 2019, 34(S1): 204-212.
[14] 董超, 赵庚星, 宿宝巍, 等. 基于无人机多光谱影像的冬小麦返青期变量施氮决策模型研究[J]. 光谱学与光谱分析, 2019, 39(11): 3599-3605.
Dong Chao, Zhao Gengxing, Su Baowei, et al. Decision model of variable nitrogen fertilizer in winter wheatreturning green stage based on UAV multispectral images [J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3599-3605.
[15] 孙棋. 基于数字图像处理技术的水稻氮素营养诊断研究[D]. 杭州: 浙江大学, 2008.
Sun Qi. Rice nitrogen nutrition diagnosis based on digital image processing technique [D]. Hangzhou: Zhejiang University, 2008.
[16] 王赏贵. 棉花冠层氮素无人机遥感监测与分布制图[D]. 塔里木: 塔里木大学, 2020.
[17] 高雯晗. 无人机载遥感数据估测油菜长势参数方法研究[D]. 武汉: 华中农业大学, 2019.
Gao Wenhan. Research on method of estimating oilseed rape growth parameters based on UAV borne remote sensing data [D]. Wuhan: Huazhong Agricultural University. 2019.
[18] 刘晓菲. 基于长时序多源遥感数据的植被覆盖度反演与变化检测研究[D]. 徐州: 中国矿业大学, 2014.
[19] 邵咏妮. 水稻生长生理特征信息快速无损获取技术的研究[D]. 杭州: 浙江大学, 2010.
Shao Yongni. Research on nondestructive and rapid acquisition technique for rice physiological characteristics and growth information [D]. Hangzhou: Zhejiang University, 2010.
[20] 陈晓群, 张学军, 白建忠, 等. 基于水稻不同生育期叶绿素值推荐追施氮量的研究初报[J]. 中国农学通报, 2010, 26(7): 147-151.
Chen Xiaoqun, Zhang Xuejun, Bai Jianzhong, et al. Preliminary study on amount of recommended topdressing nitrogen using Chlorophyll SPAD of rice during different growth stage [J]. Chinese Agricultural Science Bulletin, 2010, 26(7): 147-151.
|