中国农机化学报 ›› 2023, Vol. 44 ›› Issue (7): 179-186.DOI: 10.13733/j.jcam.issn.2095-5553.2023.07.024
刘雯雯,孙裕晶,姜树辉,姜鹏
出版日期:
2023-07-15
发布日期:
2023-07-31
基金资助:
Liu Wenwen, Sun Yujing, Jiang Shuhui, Jiang Peng
Online:
2023-07-15
Published:
2023-07-31
摘要: 障碍物检测是环境感知中的关键技术,直接影响到智能农机作业的安全性和可靠性,其中田间行人作为非结构、非固定的障碍物,是影响农机行驶安全的重要因素。遮挡情况是行人检测中的研究重点和难点,也是为满足农机自主作业的避障需求必须考虑的问题。因此对行人检测传感器技术和行人检测算法的国内外应用情况进行综述,重点关注各种检测技术和算法在复杂农田环境中的适用性。首先,梳理总结从单一传感器检测技术到多传感器融合技术的优缺点及其应用情况。其次,分别对利用传统方法和深度学习方法处理优化遮挡情况的行人检测算法的研究应用进行分析。最后,提出现有技术存在单一传感器技术的应用相对局限、多传感器融合技术的稳定性不足、行人检测算法对遮挡问题的处理效果有限等问题,同时对采集信息的多样化、无人机辅助避障、建立完整农田环境感知系统进行展望。
中图分类号:
刘雯雯, 孙裕晶, 姜树辉, 姜鹏. 遮挡情况下的行人检测方法研究[J]. 中国农机化学报, 2023, 44(7): 179-186.
Liu Wenwen, Sun Yujing, Jiang Shuhui, Jiang Peng. Study on pedestrian detection methods under occlusion[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 179-186.
[1] 李翠妮, 葛晶, 赵沙俊一. 人工智能、老龄化与经济高质量发展[J]. 当代经济科学, 2022, 44(1): 77-91. [2] 芮挺, 费建超, 周遊, 等. 基于深度卷积神经网络的行人检测[J]. 计算机工程与应用, 2016, 52(13): 162-166. Rui Ting, Fei Jianchao, Zhou You, et al. Pedestrian detection based on deep convolutional neural network [J]. Computer Engineering and Applications, 2016, 52(13): 162-166. [3] Benenson R, Omran M, Hosang J, et al. Ten years of pedestrian detection, what have we learned? [C]. European Conference on Computer Vision. Springer, Cham, 2014: 613-627. [4] Xiao Y, Zhou K, Cui G, et al. Deep learning for occluded and multiscale pedestrian detection: A review [J]. IET Image Processing, 2021, 15(2): 286-301. [5] Tabor T, Pezzementi Z, Vallespi C, et al. People in the weeds: Pedestrian detection goes offroad [C]. 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2015: 1-7. [6] 郭烈, 王荣本, 顾柏园, 等. 世界智能车辆行人检测技术综述[J]. 公路交通科技, 2005(11): 137-141.Guo Lie, Wang Rongben, Gu Baiyuan, et al. Overview of worldwide intelligent vehicle pedestrian detection technology [J]. Journal of Highway and Transportation Research and Development, 2005(11): 137-141. [7] 罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17, 5. Luo Xiwen, Liao Juan, Hu Lian, et al. Research progress of intelligent agricultural machinery and practice of unmanned farm in China [J]. Journal of South China Agricultural University, 2021, 42(6): 8-17, 5. [8] 李文涛, 张岩, 莫锦秋, 等. 基于改进YOLOv3-tiny的田间行人与农机障碍物检测[J]. 农业机械学报, 2020, 51(S1): 1-8, 33. Li Wentao, Zhang Yan, Mo Jinqiu, et al. Detection of pedestrian and agricultural vehicles in field based on improved YOLOv3-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 1-8, 33. [9] Guo L, Zhang Q, Han S. Agricultural machinery safety alert system using ultrasonic sensors [J]. Journal of Agricultural Safety and Health, 2002, 8(4): 385-96. [10] 何勇, 蒋浩, 方慧, 等.车辆智能障碍物检测方法及其农业应用研究进展[J]. 农业工程学报, 2018, 34(9): 21-32. He Yong, Jiang Hao, Fang Hui, et al. Research progress of intelligent obstacle detection methods of vehicles and their application on agriculture [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 21-32. [11] Koyama S, Okubo K, Tagawa N. Performance comparison of signal coding method in acoustic sensing for occlusion area using superdirectional sound source [C]. 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019: 603-606. [12] Dvorak J S, Stone M L, Self K P. Object detection for agricultural and construction environments using an ultrasonic sensor [J]. Journal of Agricultural Safety and Health, 2016, 22(2): 107-119. [13] 李洋. 智能车辆障碍物检测技术综述[J]. 大众科技, 2019, 21(6): 65-68.Li Yang. Overview of obstacle detection technology for intelligent vehicles [J]. Popular Science & Technology, 2019, 21(6): 65-68. [14] Pan S, Xie Y, Chen K, et al. Obstacle tracking based on the extended kalman filter and millimeterwave radar [C]. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). IEEE, 2022: 1770-1775. [15] Doerr Z J L, Lagu C. Evaluating the ability to detect foreign objects in crops using laser range scanners mounted on agricultural vehicles [C]. 2009 Reno, Nevada, June 21-June 24, 2009. American Society of Agricultural and Biological Engineers, 2009: 1. [16] 张明宇, 齐瑞锋, 王强, 等. 喷杆机械臂障碍物检测系统设计与性能测试[J]. 中国农业信息, 2021, 33(2): 49-56. Zhang Mingyu, Qi Ruifeng, Wang Qiang, et al. Design and performance test of obstacle detection system for boom manipulator [J]. China Agricultural Informatics, 2021, 33(2): 49-56. [17] Kragh M, Jrgensen R N, Pedersen H. Object detection and terrain classification in agricultural fields using 3D lidar data [C]. International Conference on Computer Vision Systems. Springer, Cham, 2015: 188-197. [18] Xu H, Li S, Ji Y, et al. Dynamic obstacle detection based on panoramic vision in the moving state of agricultural machineries [J]. Computers and Electronics in Agriculture, 2021, 184. [19] 张磊, 王书茂, 陈兵旗, 等. 基于双目视觉的农田障碍物检测[J]. 中国农业大学学报, 2007(4): 70-74. Zhang Lei, Wang Shumao, Chen Bingqi, et al. Detection of obstacles in farmland based on binocular vision [J]. Journal of China Agricultural University, 2007(4): 70-74. [20] 魏建胜, 潘树国, 田光兆, 等. 农业车辆双目视觉障碍物感知系统设计与试验[J]. 农业工程学报, 2021, 37(9): 55-63. Wei Jiansheng, Pan Shuguo, Tian Guangzhao, et al. Design and experiments of the binocular visual obstacle perception system for agricultural vehicles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 55-63. [21] 吴迪. 基于红外图像的行人检测算法研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2017.Wu Di. Research on the algorithm of pedestrian detection based on infrared images [D]. Xian: Xian Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2017. [22] Wei W, Cheng L, Xia Y, et al. Occluded pedestrian detection based on depth vision significance in biomimetic binocular [J]. IEEE Sensors Journal, 2019, 19(23): 11469-11474. [23] 韩永华, 汪亚明, 康锋, 等. 基于小波多分辨率分解的农田障碍物检测[J]. 农业机械学报, 2013, 44(6): 215-221. Han Yonghua, Wang Yaming, Kang Feng, et al. Detection of obstacles in farmland based on wavelet multiresolution transform [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 215-221. [24] Gade R, Moeslund T B. Thermal cameras and applications: A survey [J]. Machine Vision and Applications, 2014, 25(1): 245-262. [25] 孙晓刚, 李云红. 红外热像仪测温技术发展综述[J]. 激光与红外, 2008(2): 101-104.Sun Xiaogang, Li Yunhong. Review of the development of temperature measurement technology with infrared thermal imager [J]. Laser & Infrared, 2008(2): 101-104. [26] 伍利兵, 陈朝方, 林国生, 等. 红外热成像技术在安全检测领域的应用现状[J]. 品牌与标准化, 2021(4): 97-100.Wu Libing, Chen Chaofang, Lin Guosheng, et al. Application status of infrared thermal imaging technology in the field of safety inspection [J]. Brand & Standardization, 2021(4): 97-100. [27] 邓连军, 王冲, 雷克辉, 等. 红外热成像扫描技术在原油储罐油泥测量中的应用[J]. 清洗世界, 2020(6): 15-16, 52. [28] 陈红强. 非接触式红外热成像测温技术探析[J]. 中国安全防范技术与应用, 2020(4): 14-18. [29] Yeom S. Moving people tracking and false track removing with infrared thermal imaging by a multirotor [J]. Drones, 2021, 5(3): 65. [30] Steen K A, VillaHenriksen A, Therkildsen O R, et al. Automatic detection of animals in mowing operations using thermal cameras [J]. Sensors, 2012, 12(6): 7587-7597. [31] Christiansen P, Kragh M, Steen K A, et al. Platform for evaluating sensors and human detection in autonomous mowing operations [J]. Precision Agriculture, 2017, 18(3): 350-365. [32] 孔微雨. 基于多源信息的拖拉机安全预警及避障系统研究[D]. 西北农林科技大学, 2021.〖JP2〗Kong Weiyu. Safety warning and obstacles avoidance system of tractor using multiinformation [D].〖JP〗 Northwest A & F University, 2021. [33] 兰玉彬, 王林琳, 张亚莉. 农用无人机避障技术的应用现状及展望[J]. 农业工程学报, 2018, 34(9): 104-113. Lan Yubin, Wang Linlin, Zhang Yali. Application and prospect on obstacle avoidance technology for agricultural UAV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 104-113. [34] Wang Z, Miao X, Huang Z, et al. Research of target detection and classification techniques using millimeterwave radar and vision sensors [J]. Remote Sensing, 2021, 13(6): 1064. [35] 薛金林, 董淑娴, 范博文. 基于信息融合的农业自主车辆障碍物检测方法[J]. 农业机械学报, 2018, 49(S1): 29-34. Xue Jinlin, Dong Shuxian, Fan Bowen. Detection of obstacles based on information fusion for autonomous agricultural vehicles [J].Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 29-34. [36] Moorehead S J, Wellington C K, Gilmore B J, et al. Automating orchards: A system of autonomous tractors for orchard maintenance [C]. Proceedings of the IEEE international conference of intelligent robots and systems, workshop on agricultural robotics, 2012. [37] Benet B, Rousseau V, Lenain R. Fusion between a color camera and a TOF camera to improve traversability of agricultural vehicles [C]. Conférence CIGR-AGENG 2016. The 6th International Workshop Applications of Computer Image Analysis and Spectroscopy in Agriculture. 2016: 8. [38] Reina G, Milella A, Rouveure R, et al. Ambient awareness for agricultural robotic vehicles [J]. Biosystems Engineering, 2016, 146: 114-132. [39] 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述[J]. 计算机工程, 2022, 48(7): 1-12. Li Kequan, Chen Yan, Liu Jiachen, et al. Survey of deep learningbased object detection algorithms [J]. Computer Engineering, 2022, 48(7): 1-12. [40] 方路平, 何杭江, 周国民. 目标检测算法研究综述[J]. 计算机工程与应用, 2018, 54(13): 11-18, 33. Fang Luping, He Hangjiang, Zhou Guomin. Research overview of object detection methods [J]. Computer Engineering and Applications, 2018, 54(13): 11-18, 33. [41] 陈宁, 李梦璐, 袁皓, 等. 遮挡情形下的行人检测方法综述[J]. 计算机工程与应用, 2020, 56(16): 13-20. Chen Ning, Li Menglu, Yuan Hao, et al. Review of pedestrian detection with occlusion [J]. Computer Engineering and Applications, 2020, 56(16): 13-20. [42] Chen S, Bremond F, Nguyen H, et al. Exploring depth information for head detection with depth images [C]. 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2016: 228-234. [43] 廖畅, 马秀丽. 基于TOF相机的俯视行人检测[J]. 电子测量技术, 2019, 42(6): 104-108. Liao Chang, Ma Xiuli. People detection under an overhead timeofflight camera [J]. Electronic Measurement Technology, 2019, 42(6): 104-108. [44] Campos Y, Sossa H, Pajares G. Comparative analysis of texture descriptors in maize fields with plants, soil and object discrimination [J]. Precision Agriculture, 2017, 18(5): 717-735. [45] Cortes C, Vapnik V N. Support vector networks [J]. Machine Learning, 1995, 20(3): 273-297. [46] 蒋浩. 基于RTK技术的农业机械自动导航系统研究[D]. 杭州: 浙江大学, 2019.〖JP2〗Jiang Hao. Research on automatic navigation system of agricultural machinery based on RTK technology [D]. Hangzhou: Zhejiang University, 2019.〖JP〗 [47] 崔学智, 冯全, 王书志, 等. 边缘设备上的葡萄园田间场景障碍检测[J]. 中国农机化学报, 2021, 42(9): 150-156. Cui Xuezhi, Feng Quan, Wang Shuzhi, et al. Vineyard scene obstacle detection based on edge devices [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 150-156. [48] 刘慧, 张礼帅, 沈跃, 等. 基于改进SSD的果园行人实时检测方法[J]. 农业机械学报, 2019, 50(4): 29-35. Liu Hui, Zhang Lishuai, Shen Yue, et al. Realtime pedestrian detection in orchard based on improved SSD [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 29-35. [49] Pezzementi Z, Tabor T, Hu P, et al. Comparing apples and oranges: Offroad pedestrian detection on the national robotics engineering center agricultural persondetection dataset [J]. Journal of Field Robotics, 2018, 35(4): 545-563. |
[1] | 周红标, 朱亚文, 刘晓洋, 张国良, 李边豪. 基于机器视觉的水稻印刷播种机成种率检测[J]. 中国农机化学报, 2023, 44(7): 194-199. |
[2] | 孟福军, 岳胜如. 基于EKF的农机智能体自主导航算法研究[J]. 中国农机化学报, 2023, 44(4): 181-186. |
[3] | 丁力, 徐宇飞, 屈哲, 豆宇飞, 王万章, 李赫. 基于EDEM小麦收获机清选损失监测试验装置设计[J]. 中国农机化学报, 2023, 44(3): 13-21. |
[4] | 罗山, 侯俊涛, 郑彬. 基于机器视觉的石榴品质自动分级方法[J]. 中国农机化学报, 2023, 44(3): 117-122. |
[5] | 吴俊鹏, 黄光文, 李君, . 水果病害视觉与光谱检测技术研究现状及展望[J]. 中国农机化学报, 2023, 44(2): 112-118. |
[6] | 李志臣, 凌秀军, 李鸿秋. 基于机器视觉的槟榔分级方法研究[J]. 中国农机化学报, 2023, 44(1): 137-141. |
[7] | 代志伟, 程曼, 袁洪波, 蔡振江. 温室灌溉控制策略研究进展[J]. 中国农机化学报, 2022, 43(9): 63-72. |
[8] | 李加琪, 杜娟, 安广顺, 任可芸, 王中義, 印祥, . 高地隙植保机油门自动控制系统研制与试验[J]. 中国农机化学报, 2022, 43(7): 51-56. |
[9] | 朱霏雨, 刘木华, 袁海超, 赵进辉, 俞豪骏, . 基于物联网的菜田土壤温湿度监测系统设计[J]. 中国农机化学报, 2022, 43(6): 190-198. |
[10] | 王珊, 薛新宇, 郭祥雨. 基于机器视觉的油菜菌核病分级检测研究[J]. 中国农机化学报, 2022, 43(5): 47-53. |
[11] | 刘媛杰, 张泽亮, 张洪洲, 李勇, 李伟强. 基于机器视觉技术的棉籽破损检测[J]. 中国农机化学报, 2022, 43(5): 71-76. |
[12] | 李润涛, 王宪良, 姚艳春, 魏忠彩, 周华, 张祥彩. 播种机智能检测技术研究[J]. 中国农机化学报, 2022, 43(5): 93-101. |
[13] | 李雪峰, 李涛, 邱权, 樊正强, 孙娜. 果园移动机器人自主导航研究进展[J]. 中国农机化学报, 2022, 43(5): 156-164. |
[14] | 郑如新, 孙青云, 肖国栋. 基于机器视觉的金银花图像识别处理算法研究[J]. 中国农机化学报, 2022, 43(4): 153-159. |
[15] | 曹丽桃, 程曼, 袁洪波, 刘月琴, 随海燕, 赵晓霞. 可穿戴设备部署位置对羊只行为识别的影响与分析[J]. 中国农机化学报, 2022, 43(12): 133-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296