Journal of Chinese Agricultural Mechanization ›› 2024, Vol. 45 ›› Issue (4): 168-174.DOI: 10.13733/j.jcam.issn.2095-5553.2024.04.024
Previous Articles Next Articles
Yan Beibei1, Ji Yuanhao1, Qu Fengfeng2, Xu Jinpu1
Online:
2024-04-15
Published:
2024-04-28
严蓓蓓1,纪元浩1,曲凤凤2,许金普1
基金资助:
CLC Number:
Yan Beibei, Ji Yuanhao, Qu Fengfeng, Xu Jinpu. Detection of tea buds based on improved YOLOv5s[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 168-174.
严蓓蓓, 纪元浩, 曲凤凤, 许金普. 基于改进YOLOv5s的茶叶嫩芽检测[J]. 中国农机化学报, 2024, 45(4): 168-174.
[1] 罗浩伦, 冯泽霖, 冉钟南, 等. 基于VGG16网络的茶叶嫩芽自动检测研究[J]. 农业与技术, 2020, 40(1): 15-17. [2] 孙红, 李松, 李民赞, 等. 农业信息成像感知与深度学习应用研究进展[J]. 农业机械学报, 2020, 51(5): 1-17. Sun Hong, Li Song, Li Minzan, et al. Research progress of image sensing and deep learning in agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 1-17. [3] Tao W, Kunming Z, Wu Z, et al. Tea picking point detection and location based on Mask RCNN [J]. Information Processing in Agriculture, 2023, 10(2): 267-275. [4] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2017: 6517-6525. [5] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779-788. [6] Rdje N, Gunnar Ellingsen, Tone Bratteteig, et al. ECSCW 2015: Proceedings of the 14th European Conference on Computer Supported Cooperative Work [C]. Springer, Cham: 2015. [7] Xu Wenkai, Zhao Longgang, Li Juan, et al. Detection and classification of tea buds based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 192. [8] 胡根生, 吴继甜, 鲍文霞, 等. 基于改进YOLOv5网络的复杂背景图像中茶尺蠖检测[J]. 农业工程学报, 2021, 37(21): 191-198. Hu Gensheng, Wu Jitian, Bao Wenxia, et al. Detection of ectropis oblique in complex background images using improved YOLOv5 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 191-198. [9] 方梦瑞, 吕军, 阮建云, 等. 基于改进YOLOv4tiny的茶叶嫩芽检测模型[J]. 茶叶科学, 2022, 42(4): 549-560. Fang Mengrui, Lü Jun, Ruan Jianyun, et al. A tea sprout detection model based on improved YOLOv4 tiny [J]. Tea Science, 2022, 42 (4): 549-560 [10] 许宝阳, 高延峰. 基于Faster RCNN深度学习的茶叶嫩芽多维度识别及其性能分析[J]. 农业装备与车辆工程, 2023, 61(2): 19-24. Xu Baoyang, Gao Yanfeng. Multidimensional recognition and performance analysis of tea tender buds based on Faster RCNN deep learning [J]. Agricultural Equipment and Vehicle Engineering, 2023, 61 (2): 19-24. [11] 李旭, 李振海, 杨海滨, 等. 基于Faster RCNN网络的茶叶嫩芽检测[J]. 农业机械学报, 2022, 53(5): 217-224. Li Xu, Li Zhenhai, Yang Haibin, et al. Tea bud detection based on faster RCNN network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 217-224. [12] 姜苗苗, 问美倩, 周宇, 等. 基于颜色因子与图像融合的茶叶嫩芽检测方法[J]. 农业装备与车辆工程, 2020, 58(10): 44-47. Jiang Miaomiao, Wen Meiqian, Zhou Yu, et al. Tea bud detection method based on color factor and image fusion [J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(10): 44-47. [13] 汪建. 结合颜色和区域生长的茶叶图像分割算法研究[J]. 茶叶科学, 2011, 31(1): 72-77. Wang Jian. Segmentation algorithm of tea combined with the color and region growing [J]. Journal of Tea Science, 2011, 31(1): 72-77. [14] 龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41. Long Zhang, Jiang Qian, Wang Jian, et al. Research on method of tea flushes vision recognition and picking point localization [J].Transducer and Microsystem Technologies, 2022, 41(2): 39-41. [15] 周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56. Zhou Qiaoli, Ma Li, Cao Liying, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. [16] 张志远, 罗铭毅, 郭树欣, 等. 基于改进YOLO v5的自然环境下樱桃果实识别方法[J]. 农业机械学报, 2022, 53(S1): 232-240. Zhang Zhiyuan, Luo Mingyi, Guo Shuxin, et al. Cherry fruit detection method in natural scene based on improved YOLO v5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 232-240. [17] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768. [18] Neubeck A, Van Gool L. Efficient nonmaximum suppression [C]. 18th International Conference on Pattern Recognition (ICPR06). Hong Kong: IEEE, 2006, 3: 850-855. [19] 刘刚, 冯彦坤, 康熙. 基于改进YOLO v4的生猪耳根温度热红外视频检测方法[J]. 农业机械学报, 2023, 54(2): 240-248. Liu Gang, Feng Yankun, Kang Xi. Detection method of pig ear root temperature based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 240-248. [20] Syazwany N S, Nam J H, Lee S C. MMBiFPN: Multimodality fusion network with BiFPN for MRI brain tumor segmentation [J]. IEEE Access, 2021: 160708-160720. [21] 王卓, 王健, 王枭雄, 等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302. Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight realtime apple detection method based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302. [22] Wang J, Luan Z, et al. Superpixel segmentation with squeezeandexcitation networks [J]. Signal, Image and Video Processing, 2022, 16(5): 1-8. [23] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19. [24] Algorithms. Recent findings from Shanghai Jiao tong University has provided new information about algorithms (Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis) [J]. Journal of Engineering, 2016: 795. [25] 夏烨, 雷哓晖, 祁雁楠, 等. 基于改进GhostYOLOv5sBiFPN算法检测梨树花序 [J]. 智慧农业(中英文), 2022, 4(3): 108-119. Xia Ye, Lei Xiaohui, Qi Yannan, et al. Detection of pear inflorescence based on improved GhostYOLOv5sBiFPN algorithm [J]. Smart Agriculture, 2022, 4(3): 108-119. [26] Guo C, Fan B, Zhang Q, et al. Improving multiscale feature learning for object detection [J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020. [27] Jiang Z, Zhao L, Li S, et al. Realtime object detection method based on improved YOLOv4tiny [J]. arXiv Preprint, 2020, arXiv: 2011.04244. [28] Shaoqing R, Kaiming H, Ross G, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. (上接第167页) [13] Dechant C, WiesnerHanks T, Chen S, et al. Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning [J]. Phytopathology, 2017: 1426-1432. [14] 陈娟, 陈良勇, 王生生, 等. 基于改进残差网络的园林害虫图像识别[J]. 农业机械学报, 2019, 50(5): 187-195. Chen Juan, Chen Liangyong, Wang Shengsheng, et al. Pest image recognition of garden based on improved residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 187-195. [15] Oksuz K, Cam B C, Akbas E, et al. Rank & sort loss for object detection and instance segmentation [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3009-3018. [16] Li Y, Li S, Du H, et al. YOLOACN: Focusing on small target and occluded object detection [J]. IEEE Access, 2020, 8: 227288-227303. [17] Girshick R. Fast rcnn [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448. [18] Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104: 154-171. [19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [20] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv Preprint arXiv: 1409.1556, 2014. [21] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. [22] 方帅, 金忍, 于磊, 等. 一种基于RGBD图像的似物性采样算法[J]. 图学学报, 2015, 36(6): 931-936. Fang Shuai, Jin Ren, Yu Lei, et al. Object proposals from RGBD images [J]. Journal of Graphics, 2015, 36(6): 931-936. [23] Szegedy C, Ioffe S, Vanhoucke V, et al. Inceptionv4, inceptionresnet and the impact of residual connections on learning [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1). [24] Hughes D, Salathé M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J]. arXiv Preprint arXiv: 1511.08060, 2015. |
[1] | Huo Zhengrui, Sun Tiebo. A method for grading Trichosanthes based on improved YOLOv5 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 100-107. |
[2] | Chen Luwei, , Zeng Jin, , Yuan Quanchun, , Xia Ye, , Pan Jian, Lü Xiaolan, , . Pear canopy segmentation method based on improved DeepLabV3+ [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 155-161. |
[3] | Ma Zhiyan, , Li Hui, Yang Guangyou, . Research on key technologies of intelligent tea picking machine based on YOLOv3 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 199-204. |
[4] | Zhang Huimeng, He Chao, Xu Jiawen, Luo Xin, Rong Jian, Liu Xueyuan. Detection algorithm of macadamia nut at havesting stage based on SCGYOLOv5n [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 214-221. |
[5] | Ji Yuanhao, Xu Jinpu, Yan Beibei, Xue Junlong. A method for detecting quality and defects in raw coffee beans based on improved ResNet50 model [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 237-243. |
[6] | Hu Dongjun, Yan Jianwei, Zhang Zhen, Huang Xin, Niu Suzhen, Hu Zhengjun. Simulation parameters calibration of needleshaped tea based on pileup test [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(3): 66-73. |
[7] | Qiu Jinkai, Xu Xiuying, , Kang Ye, Zang Hao, Ma Kai, Guo Zhipeng. Research on watermelon fruit extraction from UAV images based on semantic segmentation [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(3): 182-188. |
[8] | Xiang Xinjian, Zheng Yu, Cao Guangke, , Li Xu, You Qinyin, Yao Jiana. Detection method of rice leaf disease based on improved Yolov5s [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(3): 212-218. |
[9] | Da Cuo, , Zhao Qijun, , , Gao Dingguo, , Suonan Jiancuo, Nima Zhaxi. Research on longterm yak individual recognition based on attention networks [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 202-208. |
[10] | Li Yuanjiang, Li Yunwu, , Zhao Ying, , Tai Shaoyu, Wang Kechao. Research on semantic segmentation of fruit trees based on improved Deeplabv3+ model [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 209-216. |
[11] | Ye Rong, Ma Zifei, Gao Quan, Li Tong, Shao Guoqi, Wang Baijuan. Target detection of tea disease based on improved YOLOv5s-ECA-ASFF algorithm [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 244-251. |
[12] | Qi Xingyuan, Lin Shuyun, Liu Chunbo, Jin Zhifei, Wang Yingfen. Design and experiment of electric remote control tea garden management machine [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 259-265. |
[13] | Wang Ruibin, Yang Shizhong, Gao Sheng. Strawberry detection combining residual network with attention mechanism [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 266-273. |
[14] | Zheng Hang, Fu Tong, Xue Xianglei, Ye Yunxiang, Yu Guohong. Research status and prospect of tea mechanized picking technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(9): 28-35. |
[15] | Yu Sheng, Xie Li. Research on plant disease identification based on transfer learning and convolutional vision transformer [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 191-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296