[1] Bao W, Qiu X, Liang D, et al. Recognition insect images at the order level based on elliptic metric learning [J]. Applied Engineering in Agriculture, 2021, 37(1): 163-170.
[2] 谢锡水. 水稻病虫害防治中的突出问题及其对策浅析[J]. 中国农业信息, 2017(19): 54-56.
[3] Lim S, Kim S, Park S, et al. Development of application for forest insect classification using CNN [C]. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2018: 1128-1131.
[4] Zhao J, Fang Y, Chu G, et al. Identification of leafscale wheat powdery mildew (Blumeria graminis f. sp. Tritici) combining hyperspectral imaging and an SVM classifier [J]. Plants, 2020, 9(8): 936.
[5] Liu T, Chen W, Wu W, et al. Detection of aphids in wheat fields using a computer vision technique [J]. Biosystems Engineering, 2016, 141: 82-93.
[6] 魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, 48(S1): 166-171.
Wei Liran, Yue Jun, Li Zhenbo, et al. Multiclassification detection method of plant leaf disease based on kernel function SVM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 166-171.
[7] 鲍文霞, 孙庆, 胡根生, 等. 基于多路卷积神经网络的大田小麦赤霉病图像识别[J]. 农业工程学报, 2020, 36(11): 174-181.
Bao Wenxia, Sun Qing, Hu Gensheng, et al.Image recognition of field wheat scab based on multiway convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 174-181.
[8] Sun H, Xu H, Liu B, et al. MEANSSD: A novel realtime detector for apple leaf diseases using improved lightweight convolutional neural networks [J]. Computers and Electronics in Agriculture, 2021, 189: 106379.
[9] 曾伟辉, 唐欣, 胡根生, 等. 基于卷积块注意力胶囊网络的小样本水稻害虫识别[J]. 中国农业大学学报, 2022, 27(3): 63-74.
Zeng Weihui, Tang Xin, Hu Gensheng, et al. Smallsample rice pest identification based on convolutional block attention capsule network [J]. Journal of China Agricultural University, 2022, 27(3): 63-74.
[10] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
Ren Huan, Wang Xuguang. Areview of attention mechanism [J]. Journal of Computer Applications, 2021, 41(S1): 1-6.
[11] 陈莹, 龚苏明. 改进通道注意力机制下的人体行为识别网络[J]. 电子与信息学报, 2021, 43(12): 3538-3545.
Chen Ying, Gong Suming. Human action recognition network based on improved channel attention mechanism [J]. Journal of Electronics & Information Technology, 2021, 43(12): 3538-3545.
[12] Xu Z, Huang X, Huang Y, et al. A realtime zanthoxylum target detection method for an intelligent picking robot under a complex background, based on an improved YOLOv5s architecture [J]. Sensors, 2022, 22(2): 682.
[13] 王文亮, 李延祥, 张一帆, 等. MPANetYOLOv5:多路径聚合网络复杂海域目标检测[J]. 湖南大学学报(自然科学版), 2022, 49(10): 69-76.
Wang Wenliang, Li Yanxiang, Zhang Yifan, et al. MPANetYOLOv5: Multipath aggregation network for complex sea object detection [J]. Journal of Hunan University (Natural Sciences), 2022, 49(10): 69-76.
[14] 顾宝兴, 刘钦, 田光兆, 等. 基于改进YOLOv3的果树树干识别和定位[J]. 农业工程学报, 2022, 38(6): 122-129.
Gu Baoxing, Liu Qin, Tian Guangzhao, et al. Recognizing and locating the trunk of a fruit tree using improved YOLOv3 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 122-129.
[15] Yang R, Li W, Shang X, et al. KPEYOLOv5: An improved small target detection algorithm based on YOLOv5 [J]. Electronics, 2023, 12(4): 817.
[16] Zheng Z, Qi H Y, Zhuang L, et al. Automated rail surface crack analytics using deep datadriven models and transfer learning [J]. Sustainable Cities and Society, 2021, 70: 102898.
[17] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[18] Zhang K, Zhou H, Bian H, et al. Certified defense against patch attacks via maskguided randomized smoothing [J]. Science China Information Sciences, 2022, 65(7): 170306.
(上接第162页)
[14] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017, 43(8): 1306-1318.
Luo Jianhao, Wu Jianxin. A survey on finegrained image categorization using deep convolutional features [J]. Acta Automatica Sinica, 2017, 43(8): 1306-1318.
[15] Demir A, Yilmaz F. InceptionResNetv2 with LeakyReLU and average pooling for more reliable and accurate classification of chest Xray images [C]. 2020 Medical Technologies Congress (TIPTEKNO). IEEE, 2020: 1-4.
[16] He K, Zhang X, Ren S, et al. Delving deep into rectifiers: Surpassing humanlevel performance on ImageNet classification [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1026-1034.
[17] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]. International Conference on Machine Learning. PMLR, 2015: 448-456.
[18] Lin M, Chen Q, Yan S. Network in network [J]. arXiv Preprint arXiv: 1312.4400, 2013.
[19] Szegedy C, Liu W, Jia Y, et al.Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[20] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014.
[21] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|