[1] Jiao L, Zhang F, Liu F, et al. A survey of deep learningbased object detection [J]. IEEE Access, 2019, 7: 128837-128868.
[2] 徐艺格, 王丽娟. 草莓品质育种研究进展[J]. 北方园艺, 2020(18): 152-157.
Xu Yige, Wang Lijuan. Research progress on strawberry quality breeding [J]. Northern Horticulture, 2020(18): 152-157.
[3] 李长勇, 房爱青, 谭红, 等. 高架草莓采摘机器人系统研究[J]. 机械设计与制造, 2017(6): 245-247, 251.
Li Changyong, Fang Aiqing, Tan Hong, et al. Elevated strawberry picking robot system research [J]. Machinery Design & Manufacture, 2017(6): 245-247, 251.
[4] 毛彦栋, 宫鹤. 基于SVM和DS证据理论融合多特征的玉米病害识别研究[J]. 中国农机化学报, 2020, 41(4): 152-157.
Mao Yandong, Gong He. Corn disease identification study based on SVM and DS evidence theory fusion multifeatures [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 152-157.
[5] 杨英茹, 吴华瑞, 张燕, 等. 基于复杂环境的番茄叶部图像病虫害识别[J]. 中国农机化学报, 2021, 42(9): 177-186.
Yang Yingru, Wu Huarui, Zhang Yan, et al. Tomato disease recognition using leaf image based on complex environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 177-186.
[6] Le Cun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[7] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Conference on Computer Vision and Pattern Recognition, Columbus; IEEE, 2014: 580-587.
[8] Girshick R. Fast RCNN[C]. Conference on Computer Vision and Pattern Recognition, Boston; IEEE, 2015: 1440-1448.
[9] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Conference on Computer Vision and Pattern Recognition, Las Vegas; IEEE, 2016: 779-788.
[11] Liu Wei, Anguelov D, Erhan D, et al. SSD: single shot multiBox detector[C]. European Conference on Computer Vision, Amsterdam; Springer, 2016: 21-37.
[12] 宋中山, 汪进, 郑禄, 等. 基于二值化的Faster R-CNN柑橘病虫害识别研究[J]. 中国农机化学报, 2022, 43(6): 150-158.
Song Zhongshan, Wang Jin, Zheng Lu, et al. Research on citrus pest identification based on Binary Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 150-158.
[13] 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185.
Li Jiuhao, Lin Lejian, Tian Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185.
[14] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[15] 李善军, 胡定一, 高淑敏, 等. 基于改进SSD的柑橘实时分类检测[J]. 农业工程学报, 2019, 35(24): 307-313.
Li Shanjun, Hu Dingyi, Gao Shumin, et al. Realtime classification and detection of citrus based on improved single short multibox detecter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 307-313.
[16] Lu X, Ji J, Xing Z, et al. Attention and feature fusion SSD for remote sensing object detection [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9.
[17] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Conference on Computer Vision and Pattern Recognition, Las Vegas; IEEE, 2016: 770-778.
[18] 付中正, 何潇, 方逵, 等. 基于改进SSD网络的西兰花叶片检测研究[J]. 中国农机化学报, 2020, 41(4): 92-97.
Fu Zhongzheng, He Xiao, Fang Kui, et al. Study on the detection of broccoli leaves based on the improved SSD network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 92-97.
[19] 郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5): 1292-1297.
Guo Yuexiu, Yang Wei, Liu Qi, et al. Survey of residual network [J]. Application Research of Computers, 2020, 37(5): 1292-1297.
[20] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
Ren Huan, Wang Xuguang. Review of attention mechanism [J]. Journal of Computer Applications, 2021, 41(S1): 1-6.
[21] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]. Proceedings of the European conference on computer vision (ECCV), 2018: 3-19.
[22] 洪哲昊, 陈东方, 王晓峰. 基于多任务分支SSD的目标检测算法[J]. 计算机工程与设计, 2022, 43(3): 677-684.
Hong Zhehao, Chen Dongfang, Wang Xiaofeng. Object detection algorithm based on multitask branch SSD [J]. Computer Engineering and Design, 2022, 43(3): 677-684.
|