Journal of Chinese Agricultural Mechanization ›› 2024, Vol. 45 ›› Issue (1): 244-251.DOI: 10.13733/j.jcam.issn.2095-5553.2024.01.034
Previous Articles Next Articles
Ye Rong1, Ma Zifei2, Gao Quan3, Li Tong2, Shao Guoqi2, Wang Baijuan4
Online:
2024-01-15
Published:
2024-02-06
叶荣1,马自飞2,高泉3,李彤2,邵郭奇2,王白娟4
基金资助:
CLC Number:
Ye Rong, Ma Zifei, Gao Quan, Li Tong, Shao Guoqi, Wang Baijuan. Target detection of tea disease based on improved YOLOv5s-ECA-ASFF algorithm[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 244-251.
叶荣, 马自飞, 高泉, 李彤, 邵郭奇, 王白娟. 基于改进YOLOv5sECAASFF算法的茶叶病害目标检测[J]. 中国农机化学报, 2024, 45(1): 244-251.
[1] 邹剑平, 王旭. 基于品牌竞争力评价指标体系的普洱茶竞争力研究[J]. 云南农业大学学报(社会科学), 2023, 17(3): 47-54. Zou Jianping, Wang Xu. Research on the construction of brand competitiveness evaluation system of Puer tea [J]. Journal of Yunnan Agricultural University (Social Sciences), 2023, 17(3): 47-54. [2] 雷嘉兴, 王伟. 二维傅里叶图像预处理对DNN网络的影响研究[J]. 科学技术创新, 2022(11): 61-64. Lei Jiaxing, Wang Wei.Research on the effect of image preprocessing with 2D Fourier on DNN network [J]. Scientific and Technological Innovation, 2022(11): 61-64 [3] 平昱恺, 黄鸿云, 江贺, 等. 目标检测模型的决策依据与可信度分析[J]. 软件学报, 2022, 33(9): 3391-3406. Ping Yukai, Huang Hongyun, Jiang He, et al. Decision basis and credibility analysis of object detection models [J]. Journal of Software, 2022, 33(9): 3391-3406 [4] 史春天, 曾艳阳, 侯守明. 群体智能算法在图像分割中的应用综述[J].计算机工程与应用, 2021, 57(8): 36-47. Shi Chuntian, Zeng Yanyang, Hou Shouming. Summary of application of swarm intelligence algorithms in image segmentation [J]. Computer Engineering and Applications, 2021, 57(8): 36-47 [5] 桂泽春, 赵思健. 人工智能在农业风险管理中的应用研究综述[J]. 智慧农业(中英文), 2023, 5(1): 82-98. Gui Zechun, Zhao Sijian. Research application of artificial intelligence in agricultural risk management: A review [J]. Smart Agriculture, 2023, 5(1): 82-98 [6] 袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334. Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334 [7] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [8] Jan B, Farman H, Khan M, et al. Deep learning in big data analytics: A comparative study [J]. Comp.Electr.Eng, 2019, 75: 275-287. [9] 孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810. Sun Zhijun, Xue Lei, Xu Yangming, et al. Overview of deep learning [J]. Application Research of Computers, 2012, 29(8): 2806-2810. [10] 王大庆, 禄琳, 于兴龙, 等. 基于深度迁移学习的EfficientNet玉米叶部病害识别[J]. 东北农业大学学报, 2023, 54(5): 66-76. Wang Daqing, Lu Lin, Yu Xinglong, et al. Maize leaf diseases identification using EfficientNet based on deeptransfer learning [J]. Journal of Northeast Agricultural University, 2023, 54(5): 66-76. [11] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201. Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201. [12] 赵嘉威, 田光兆, 邱畅, 等. 基于改进YOLOv4算法的苹果叶片病害检测方法[J]. 江苏农业科学, 2023, 51(9): 193-199. Zhao Jiawei, Tian Guangzhao, Qiu Chang, et al. Detection method of apple leaf diseases based on improved YOLOv4 algorithm [J]. Jiangsu Agricultural Sciences, 2023, 51(9): 193-199. [13] 邹珺淏, 任酉贵, 冷芳玲, 等. LWYOLOv7SAR: 轻量SAR图像目标检测方法[J/OL]. 小型微型计算机系统:1-9[2023-11-06]. Zou Junhao, Ren Yougui, Leng Fangling, et al. LWYOLOv7SAR: Lightweight SAR image object detection method [J/OL]. Journal of Chinese Computer Systems: 1-9[2023-11-06]. [14] 刘诗怡, 胡滨, 赵春. 基于改进YOLOv7的黄瓜叶片病虫害检测与识别[J]. 农业工程学报, 2023, 39(15): 163-171. Liu Shiyi, Hu Bin, Zhao Chun. Detection and identification of cucumber leaf diseases based on improved YOLOv7[J].Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15): 163-171. [15] 李伟豪, 詹炜, 周婉, 等. 轻量型Yolov7-TSA网络在茶叶病害检测识别中的研究与应用[J]. 河南农业科学, 2023, 52(5): 162-169. Li Weihao, Zhan Wei, Zhou Wan, et al. Research and application of lightweight Yolov7-TSA network in tea disease detection and identification [J]. Journal of Henan Agricultural Sciences, 2023, 52(5): 162-169. [16] 乔琛, 韩梦瑶, 高苇, 等. 基于FasterNAMYOLO的黄瓜霜霉病菌孢子检测[J]. 农业机械学报, 2023, 54(12): 288-299. Qiao Chen, Han Mengyao, Gao Wei, et al. Quantitative detection of cucumber downy mildew spores at multiscale based on FasterNAMYOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 288-299. [17] 熊梦园, 詹炜, 桂连友, 等. 基于ResNet模型的玉米叶片病害检测与识别[J]. 江苏农业科学, 2023, 51(8): 164-170. Xiong Mengyuan, Zhan Wei, Gui Lianyou, et al. Detection and identification of corn leaf diseases based on ResNet model [J]. Jiangsu Agricultural Sciences, 2023, 51(8): 164-170. [18] 毛锐, 张宇晨, 王泽玺, 等. 利用改进FasterRCNN识别小麦条锈病和黄矮病[J]. 农业工程学报, 2022, 38(17): 176-185. Mao Rui, Zhang Yuchen, Wang Zexi, et al. Recognizing stripe rust and yellow dwarf of wheat using improved FasterRCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 176-185. [19] 曹藤宝, 张欣, 陈孝玉龙, 等. 融合空间注意力机制和DenseNet的玉米病害分类方法[J]. 无线电工程, 2022, 52(10): 1710-1717. Cao Tengbao, Zhang Xin, Chen Xiaoyulong, et al. Maize disease classification method based on spatial attention mechanism and DenseNet [J]. Radio Engineering, 2022, 52(10): 1710-1717. [20] 徐振南, 王建坤, 胡益嘉, 等. 基于MobileNetV3的马铃薯病害识别[J]. 江苏农业科学, 2022, 50(10): 176-182. Xu Zhennan, Wang Jiankun, Hu Yijia, et al. Potato disease recognition based on MobileNetV3 [J]. Jiangsu Agricultural Sciences, 2022, 50(10): 176-182. [21] 李好, 邱卫根, 张立臣. 改进ShuffleNet V2的轻量级农作物病害识别方法[J]. 计算机工程与应用, 2022, 58(12): 260-268. Li Hao, Qiu Weigen, Zhang Lichen. Improved ShuffleNet V2 for lightweight crop disease identification [J]. Computer Engineering and Applications, 2022, 58(12): 260-268. [22] 孙丰刚, 王云露, 兰鹏, 等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报, 2022, 38(11): 171-179. Sun Fenggang, Wang Yunlu, Lan Peng, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning [J].Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 171-179. [23] Tian M, Liao Z H. Research on flower image classification method based on YOLOv5 [J]. Journal of Physics: Conference Series, 2021, 2024(1). [24] 许伟, 熊卫华, 姚杰, 等. 基于改进YOLOv3算法在垃圾检测上的应用[J]. 光电子·激光, 2020, 31(9): 928-938. Xu Wei, Xiong Weihua, Yao Jie,et al. Application of garbage detection based on improved YOLOv3 algorithm [J]. Journal of Optoelectronics·Laser, 2020, 31(9): 928-938. [25] Xu X W, Wang J W, Zhong B F, et al. Deep learningbased tool wear prediction and its application for machining process using multiscale feature fusion and channel attention mechanism [J]. Measurement, 2021, 177: 109254. [26] Wang Q L, Wu B G, Zhu P F, et al. ECANet: Efficient channel attention for deep convolutional neural networks [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 11531-11539. [27] 张秀花, 静茂凯, 袁永伟, 等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报, 2022, 38(1): 221-229. Zhang Xiuhua, Jing Maokai, Yuan Yongwei, et al. Tomato seedling classification detection using improved YOLOv3-Tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 221-229. [28] 李永上, 马荣贵, 张美月. 改进YOLOv5s+DeepSORT的监控视频车流量统计[J]. 计算机工程与应用, 2022, 58(5): 271-279. Li Yongshang, Ma Ronggui, Zhang Meiyue. Traffic monitoring video vehicle volume statistics method based on improved YOLOv5s+DeepSORT [J]. Computer Engineering and Applications, 2022, 58(5): 271-279. [29] 文斌, 曹仁轩, 杨启良, 等. 改进YOLOv3算法检测三七叶片病害[J]. 农业工程学报, 2022, 38(3): 164-172. Wen Bin, Cao Renxuan, Yang Qiliang, et al. Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 164-172. |
[1] | Da Cuo, , Zhao Qijun, , , Gao Dingguo, , Suonan Jiancuo, Nima Zhaxi. Research on longterm yak individual recognition based on attention networks [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 202-208. |
[2] | Li Yuanjiang, Li Yunwu, , Zhao Ying, , Tai Shaoyu, Wang Kechao. Research on semantic segmentation of fruit trees based on improved Deeplabv3+ model [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 209-216. |
[3] | Fang Junze, Guo Zheng, Li Ge, Xing Suxia, Wang Yu. Classification model of citrus disease leaf based on improved SwinTransformer [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 252-258. |
[4] | Wang Ruibin, Yang Shizhong, Gao Sheng. Strawberry detection combining residual network with attention mechanism [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 266-273. |
[5] | Lin Sen, , Xu Tongyu, Ge Yuhao, Ma Jing, Sun Tianlong, Zhao Chunjiang. 3D information detection method for facility greenhouse tomato based on improved YOLOv5l [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 274-284. |
[6] | Hou Bingfa, Li Xiaomin, Mou Xiangwei, Yao Huaping. Design and experiment of inspection robot system in cherry tomato greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 285-294. |
[7] | Wu Xiao, Yang Ying, Liu Gang, Zhang Qian, Ning Yuanlin. Pig individual recognition method based on transfer learning and improved ResNet34 for real environment [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(9): 214-221. |
[8] | Sun Songli, Wen Hongyuan, Liu Binling, Zhong Jinyang, Mao Zhengxing. Design of intelligent sorting system of Pleurotus eryngii based on ROS and deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 95-102. |
[9] | Gao Fangzheng, Tang Wenjun, Chen Guangming, , Huang Jiacai. Fast recognition of ripe tomato fruits in complex environment based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 174-183. |
[10] | Yu Sheng, Xie Li. Research on plant disease identification based on transfer learning and convolutional vision transformer [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 191-197. |
[11] | Xu Tao, Lü Xiaolan, , Qi Yannan, Zeng Jin, Lei Xiaohui, Yuan Quanchun. Research status on equipment and technology of orchard airassisted sprayer in China [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 69-77. |
[12] | Li Zongnan, Jiang Yi, Wang Si, Li Yuanhong, Huang Ping, Wei Peng. Object detection of invasive Erigeron L. plants base on YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 200-206. |
[13] | Wang Chuntao, , , , Liang Weijian, Guo Qingwen, Zhong Hao, Gan Yu, Xiao Deqin, , . Review on computervisionbased detection of agricultural pests [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 207-213. |
[14] | Chen Weimei, Liu Xinwei, Wang Tiewei, Xu Wenkai, Li Juan. Recognition of pine wilt disease based on twolevel fusion deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 214-219. |
[15] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296