[1] 谢尧庆, 邓继忠, 叶家杭, 等. 基于5G的无人机图传及在植保无人机的应用展望[J]. 中国农机化学报, 2022, 43(1): 135-141.
Xie Yaoqing, Deng Jizhong. Ye Jiahang, et al. UAV image transmission based on 5G and its application prospect in plant protection UAV [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 135-141.
[2] Zhou X, Zheng H B, Xu X Q, et al. Predicting grain yield in rice using multitemporal vegetation indices from UAV-based multispectral and digital imagery [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255.
[3] Zheng K, Jia G, Yang L, et al. A compound fault labeling and diagnosis method based on flight data and BIT record of UAV [J]. Applied Sciences, 2021, 11(12): 5410.
[4] 刘遐龄, 程多祥, 李涛, 等. 无人机遥感影像的松材线虫病危害木自动监测技术初探[J]. 中国森林病虫, 2018, 37(5): 16-21.Liu Xialing, Cheng Duoxiang, Li Tao, et al. Preliminary study on automatic monitoring trees infected by pine wood nematode with high resolution images from unmanned aerial vehicle [J]. Forest Pest and Disease, 2018, 37(5): 16-21.
[5] 刘金沧, 王成波, 常原飞. 基于多特征CRF的无人机影像松材线虫病监测方法[J]. 测绘通报, 2019, 4(7): 78-82.Liu Jincang, Wang Chengbo, Chang Yuanfei. Monitoring method of bursaphelenchus xylophilus based on multifeature CRF by UAV image [J]. Bulletin of Surveying and Mapping, 2019, 4(7): 78-82.
[6] 李浩, 徐航煌, 郑恒宇, 等. 基于无人机遥感图像的松材线虫病监测技术研究[J]. 中国农机化学报, 2020, 41(9): 170-175.
Li Hao, Xu Hanghuang, Zheng Hengyu, et al. Research on pine wood nematode surveillance technology based on unmanned aerial vehicle remote sensing image [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(9): 170-175.
[7] Liu Y, Chen J H. Integrated soft sensor using justintime support vector regression and probabilistic analysis for quality prediction of multigrade processes [J]. Journal of Process Control, 2013, 23(6): 793-804.
[8] Han Z Z, Deng L M. Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data [J]. Computers and Electronics in Agriculture, 2018, 153(5): 248-255.
[9] 胡根生, 张学敏, 梁栋, 等. 基于加权支持向量数据描述的遥感图像病害松树识别[J]. 农业机械学报, 2013, 44(5): 258-263, 287.
Hu Gensheng, Zhang Xuemin, Liang Dong, et al. Infected pine recognition in remote sensing images based on weighted support vector data description [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 258-263, 287.
[10] 黄芳芳, 雷鸣, 张力, 等. 基于随机森林和决策树的马尾松松材线虫病监测方法[J]. 信息通信, 2019, 4(12): 32-36.〖JP2〗Huang Fangfang, Lei Ming, Zhang Li, et al. Monitoring method of pine wood nematode disease based on random forest and decision tree [J]. Information & Communications, 2019, 4(12): 32-36.
[11] 张军国, 韩欢庆, 胡春鹤, 等. 基于无人机多光谱图像的云南松虫害区域识别方法[J]. 农业机械学报, 2018, 49(5): 249-255.
Zhang Junguo, Han Huanqing, Hu Chunhe, et al. Identificationmethod of pinus yunnanensis pest area based on UAV multispectral images [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 249-255.
[12] 王铁伟, 赵瑶, 孙宇馨, 等. 基于数据平衡深度学习的不同成熟度冬枣识别[J]. 农业机械学报, 2020, 51(S1): 457-463, 492.
Wang Tiewei, Zhao Yao, Sun Yuxin, et al. Recognition approach based on databalanced Faster R-CNN for winter jujube with different levels of maturity [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 457-463, 492.
[13] Xu W K, Zhao L G, Li J, et al. Detection and classification of tea buds based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 192: 106547.
[14] 李昊, 刘海隆, 刘生龙. 基于深度学习的柑橘病虫害动态识别系统研发[J]. 中国农机化学报, 2021, 42(9): 195-201, 208.
Li Hao, Liu Hailong, Liu Shenglong. Research on dynamic identification system of citrus diseases and pests based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 195-201, 208.
[15] Li J, Xu C, Jiang L, et al. Detection and analysis of behavior trajectory for sea cucumbers based on deep learning [J]. IEEE Access, 2019, 8: 18832-18840.
[16] Xu W, Zhu Z, Ge F, et al. Analysis of behavior trajectory based on deep learning in ammonia environment for fish [J]. Sensors, 2020, 20(16): 4425.
[17] Zheng H, Wang R, Yu Z, et al. Automatic plankton image classification combining multiple view features via multiple kernel learning [J]. BMC bioinformatics, 2017, 18(16): 1-18.
[18] Zhou L, Zhang C, Wang Z, et al. Hierarchical palmprint feature extraction and recognition based on multiwavelets and complex network [J]. IET Image Processing, 2018, 12(6): 985-992.
[19] 徐信罗, 陶欢, 李存军, 等. 基于Faster R-CNN的松材线虫病受害木识别与定位[J]. 农业机械学报, 2020, 51(7): 228-236.
Xu Xinluo, Tao Huan, Li Cunjun, et al. Detection and location of pine wilt disease induced dead pine trees based on faster R-CNN and UAV remote sensing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 228-236.
|