[1]
Zhang M, Meng Q. Automatic citrus canker detection from leaf images captured in field [J]. Pattern Recognition Letters, 2011, 32(15): 2036-2046.
[2]
Phadikar S, Sil J, Das A K. Rice diseases classification using feature selection and rule generation techniques [J]. Computers and Electronics in Agriculture, 2013, 90: 76-85.
[3]
Wang J, He J, Han Y, et al. An adaptive thresholding algorithm of field leaf image [J]. Computers and Electronics in Agriculture, 2013, 96(6): 23-39.
[4]
Chen L C, Papandreou G, Schroff F, et al. Rethinking Atrous convolution for semantic image segmentation [J]. 2017: 21-22.
[5]
Visin F, Kastner K, Cho K, et al. ReNet: A recurrent neural network based alternative to convolutional networks [J]. Computer Science, 2015, 25(7): 2983-2996.
[6]
Li Z, Gan Y, Liang X, et al. LSTM-CF: Unifying context modeling and fusion with LSTMs for RGB-D scene labeling [J]. Springer International Publishing, 2016: 541-557.
[7]
Zheng S, Lu J, Zhao H, et al. Rethinking semantic segmentation from a sequencetosequence perspective with transformers [C]. Computer Vision and Pattern Recognition. IEEE, 2021.
[8]
Mnih V, Heess N, Graves A, et al. Recurrent models of visual attention [J]. Advances in Neural Information Processing Systems, 2014.
[9]
Jie H, Li S, Gang S. SqueezeandExcitation Networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
[10]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015.
[11]
Grinblat G L, Uzal L C, Larese M G, et al. Deep learning for plant identification using vein morphological patterns [J]. Computers and Electronics in Agriculture, 2016, 127: 418-424.
[12]
Srdjan S, Marko A, Andras A, et al. Deep neural networks based recognition of plant diseases by leaf image classification [J]. Computational Intelligence and Neuroscience, 2016: 1-11.
[13]
刘冬寒, 钱程. 基于迁移学习和残差网络的农作物病害识别[J]. 计算机科学与应用, 2021, 11(4): 1165-1172.
Liu Donghan, Qian Cheng. Crop disease recognition based on residual network of transfer learning [J]. Computer Science and Application, 2021, 11(4): 1165-1172.
[14]
Xiu J, Jie L, Wang S, et al. Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field [J]. Remote Sensing, 2018, 10(3): 395.
[15]
Liu B, Zhang Y, He D, et al. Identification of apple leaf diseases based on deep convolutional neural networks [J]. Symmetry, 2017, 10(1): 11.
[16]
Fang T, Chen P, Zhang J, et al. Identification of apple leaf diseases based on convolutional neural network [C]. International Conference on Intelligent Computing. Springer, Cham, 2019: 553-564.
[17]
Chao X, Hu X, Feng J, et al. Construction of apple leaf diseases identification networks based on Xception fused by SE module [J]. Applied Sciences, 2021,11(10).
[18]
Fang T, Chen P, Zhang J, et al. Crop leaf disease grade identification based on an improved convolutional neural network [J]. Journal of Electronic Imaging, 2020, 29(1): 013004.
[19]
Zhang D, Wang D,Gu C, et al. Using neural network to identify the severity of wheat Fusarium head blight in the field environment [J]. Remote Sensing, 2019, 11(20): 2375.
[20]
Ennadifi E, Laraba S, Vincke D, et al. Wheat diseases classification and localization using convolutional neural networks and GradCAM visualization [C]. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 2020.
[21]
张善文, 王振, 王祖良. 多尺度融合卷积神经网络的黄瓜病害叶片图像分割方法[J]. 农业工程学报, 2020, 36(16): 149-157.
Zhang Shanwen, Wang Zhen, Wang Zuliang. Method for image segmentation of cucumber disease leaves based on multiscale fusion convolutional neural networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 149-157.
[22]
Liang X, Wang B. Wheat powdery mildew spore images segmentation based on U-Net [J]. Journal of Physics: Conference Series, 2020, 1631(1).
[23]
刘永波, 胡亮, 曹艳, 等. 基于U-Net的玉米叶部病斑分割算法[J]. 中国农学通报, 2021, 37(5): 88-95.
Liu Yongbo, Hu Liang, Cao Yan, et al. Image segmentation for maize leaf disease based on U-Net [J]. Chinese Agricultural Science Bulletin, 2021, 37(5): 88-95.
[24]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]. Medical Image Computing and ComputerAssisted Intervention—MICCAI 2015: 18th International Conference, 2015: 234-241.
[25]
陈进, 韩梦娜, 练毅, 等. 基于U-Net模型的含杂水稻籽粒图像分割[J]. 农业工程学报, 2020, 36(10): 174-180.
Chen Jin, Han Mengna, Lian Yi, et al. Segmentation of impurity rice grain images based on U-Net model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 174-180.
[26]
张汉, 张德祥, 陈鹏, 等. 并行注意力机制在图像语义分割中的应用[J]. 计算机工程与应用, 2022, 58(9): 151-160.
Zhang Han, Zhang Dexiang, Chen Peng, et al. Application of parallel attention mechanism in image semantic segmentation [J]. Computer Engineering and Applications, 2022, 58(9): 151-160.
[27]
钟昌源, 胡泽林, 李淼, 等. 基于分组注意力模块的实时农作物病害叶片语义分割模型[J]. 农业工程学报, 2021, 37(4): 208-215.
Zhong Changyuan, Hu Zelin, Li Miao, et al. Realtime semantic segmentation model for crop disease leaves using group attention module [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 208-215.
[28]
王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割[J]. 农业工程学报, 2021, 37(9): 211-221.
Wang Can, Wu Xinhui, Zhang Yanqing, et al. Recognition and segmentation of maize seedlings in field based on dual attention semantic segmentation network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 211-221.
[29]
Gu Z, Cheng J, Fu H, et al. CE-Net: Context encoder network for 2D medical image segmentation [J]. IEEE Transactions on Medical Imaging, 2019.
[30]
Li Z,Gan Y, Liang X, et al. LSTM-CF: Unifying context modeling and fusion with LSTMs for RGB-D scene labeling [C]. Computer VisionECCV 2016: 14th European Conference, 2016: 541-557.
|