Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (4): 137-144.DOI: 10.13733/j.jcam.issn.2095-5553.2023.04.019
Previous Articles Next Articles
Fu Jian, Xue Xinyu, Sun Zhu, Xu Yang
Online:
2023-04-15
Published:
2023-04-25
付健,薛新宇,孙竹,徐阳
基金资助:
CLC Number:
Fu Jian, Xue Xinyu, Sun Zhu, Xu Yang. Study on extraction of rapeseed field boundary[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 137-144.
付健, 薛新宇, 孙竹, 徐阳. 油菜地块边界提取研究[J]. 中国农机化学报, 2023, 44(4): 137-144.
[1] Georgi C, Spengler D, Itzerott S, et al. Automatic delineation algorithm for sitespecific management zones based on satellite remote sensing data [J]. Precision Agriculture, 2018, 19(4): 684-707. [2] Fmb A, Lsg B, Rd B, et al. Delineation of management zones in agricultural fields using covercrop biomass estimates from PlanetScope data [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 85. [3] Muoz X, Freixenet J, Cuf X, et al. Strategies for image segmentation combining region and boundary informationScienceDirect [J]. Pattern Recognition Letters, 2003, 24(1-3): 375-392. [4] 贾坤, 李强子, 田亦陈, 等. 遥感影像分类方法研究进展[J]. 光谱学与光谱分析, 2011, 31(10): 2618-2623. Jia Kun, Li Qiangzi, Tian Yichen, et al. A review of classification method of remote sensing imagery [J]. Spectroscopy and spectral analysis, 2011, 31(10): 2618-2623. [5] 陈君颖, 田庆久. 高分辨率遥感植被分类研究[J]. 遥感学报, 2007, 11(2): 221-227. Chen Junying, Tian Qingjiu. Vegetation classification based on highresolution satellite image [J]. Journal of Remote Sensing, 2007, 11(2): 221-227. [6] Watkins B, Niekerk A V. A comparison of objectbased image analysis approaches for field boundary delineation using multitemporal Sentinel2 imagery [J]. Computers and Electronics in Agriculture, 2019, 158: 294-302. [7] Watkins B, Niekerk A V. Preprint automating field boundary delineation with multitemporal sentinel2 imagery [J]. Computers and Electronics in Agriculture, 2019, 167: 105078. [8] 李森. 高空间分辨率遥感影像耕地地块提取方法研究[D]. 北京: 中国科学院大学, 2019. Li Sen. Research on cultivated land parcel extraction method based on high spatial resolution remote sensing image [D]. Beijing: University of Chinese Academy of Sciences, 2019. [9] 王利民, 刘佳, 杨玲波, 等. 基于无人机影像的农情遥感监测应用[J]. 农业工程学报, 2013, 29(18): 136-145. Wang Limin, Liu Jia, Yang Lingbo, et al. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring [J]. Transactions of the Chinese society of Agricultural Engineering, 2013, 29(18): 136-145. [10] 张正健, 李爱农, 边金虎, 等. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62. Zhang Zhengjian, Li Ainong, Bian Jinhu, et al. Estimating aboveground biomass of grassland in Zoige by visible vegetation index derived from unmanned aerial vehicle image [J]. Remote Sensing Technology and Application, 2016, 31(1): 51-62. [11] 纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报, 2019, 56(4): 773-784. Ji Jingchun, Zhao Yuan, Zou Xiaojuan, et al. Advancement in application of UAV remote sensing to monitoring of farmlands [J]. Acta Pedologica Sinica, 2019, 56(4): 773-784. [12] Fang H, Chen H, Jiang H, et al. Research on method of farmland obstacle boundary extraction in UAV remote sensing images [J]. Sensors, 2019(19): 4431-4444. [13] 韩文霆, 张立元, 张海鑫, 等. 基于无人机遥感与面向对象法的田间渠系分布信息提取[J]. 农业机械学报, 2017, 48(3): 205-214. Han Wenting, Zhang Liyuan, Zhang Haixin, et al. Extraction method of sublateral canal distribution information based on UAV remote sensing [J]. Transactions of the Chinese society for Agricultural Machinery, 2017, 48(3): 205-214. [14] 郭鹏, 武法东, 戴建国, 等. 基于无人机可见光影像的农田作物分类方法比较[J]. 农业工程学报, 2017, 33(13): 112-119. Guo Peng, Wu Fadong, Dai Jianguo, et al. Comparison of farmland crop classification methods based on visible light images of unmanned aerial vehicles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 112-119. [15] Wang L, Wang Y, Zhang J, et al. Research on boundary recognition and extraction method of field operation area based on UAV remote sensing images [J]. IFACPapers OnLine, 2019, 52(30): 231-238. [16] Bergado J R, Persello C, Stein A. Recurrent multiresolution convolutional networks for VHR image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6361-6374. [17] Cheng T, Ji X, Yang G, et al. DESTIN: A new method for delineating the boundaries of crop fields by fusing spatial and temporal information from WorldView and Planet satellite imagery [J]. Computers and Electronics in Agriculture, 2020, 178. [18] Hong R, Park J, Jang S, et al. Development of a parcellevel land boundary extraction algorithm for aerial imagery of regularly arranged agricultural areas [J]. Remote Sensing, 2021, 13(6): 1167. [19] Wagner M P, Oppelt N. Extracting agricultural fields from remote sensing imagery using graphbased growing contours [J]. Remote Sensing, 2020, 12(7): 1205. [20] 蒋军娟. 基于不同算法的地类边界轮廓检测效果对比分析[J]. 北京测绘, 2020, 34(12): 1763-1766. Jiang Junjuan. Comparison and analysis of the detection effect of the boundary contour of land class based on different algorithms [J]. Beijing Surveying and Mapping, 2020, 34(12): 1763-1766. [21] 庞新华, 朱文泉, 潘耀忠, 等. 基于高分辨率遥感影像的耕地地块提取方法研究[J]. 测绘科学, 2009, 34(1): 48-49, 161. Pang Xinhua, Zhu Wenquan, Pan Yaozhong, et al. Research on cultivated land parcel extraction based on highresolution remote sensing image [J]. Science of Surveying and Mapping, 2009, 34(1): 48-49, 161. [22] 杨亚男, 康洋, 樊晓, 等. 基于地形特征的无人机遥感梯田影像边缘提取方法[J]. 智慧农业, 2019, 1(4): 50-61. Yang Yanan, Kang Yang, Fan Xiao, et al. Edge extraction method of remote sensing UAV terrace image based on topographic feature [J]. Smart Agriculture, 2019, 1(4): 50-61. [23] 吴晗, 林晓龙, 李曦嵘, 等. 面向农业应用的无人机遥感影像地块边界提取[J]. 计算机应用, 2019, 39(1): 298-304. Wu Han, Lin Xiaolong, Li Xirong, et al. Land parcel boundary extraction of UAV remote sensing image in agricultural application [J]. Journal of Computer Applications, 2019, 39(1): 298-304. [24] 杨蜀秦, 宋志双, 尹瀚平, 等. 基于深度语义分割的无人机多光谱遥感作物分类方法[J]. 农业机械学报, 2021, 52(3): 185-192. Yang Shuqin, Song Zhishuang, Yin Hanping, et al. Crop classification method of UVA multispectral remote sensing based on deep semantic segmentation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 185-192. [25] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-159. Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152-159. [26] 田振坤, 傅莺莺, 刘素红, 等. 基于无人机低空遥感的农作物快速分类方法[J]. 农业工程学报, 2013, 29(7): 109-116, 295. Tian Zhenkun, Fu Yingying, Liu Suhong, et al.Rapid crops classification based on UAV lowaltitude remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 109-116, 295. [27] Alastair P M, Simon P, Jonathan W, et al. Superpixel lattices[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008. [28] 韩纪普, 段先华, 常振. 基于SLIC和区域生长的目标分割算法[J]. 计算机工程与应用, 2021, 57(1): 213-218. Han Jipu, Duan Xianhua, Chang Zhen. Target segmentation algorithm based on SLIC and region growing [J]. Computer Engineering and Applications, 2021, 57(1): 213-218. [29] 任欣磊, 王阳萍. 基于改进简单线性迭代聚类算法的遥感影像超像素分割[J]. 激光与光电子学进展, 2020, 57(22): 354-362. Ren Xinlei, Wang Yangping. Supperpixel segmentation of remote sensing image based on improved simple linear clustering algorithm [J]. Laser & Optoelectronic Progress, 2020, 57(22): 354-362. [30] 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325. Zhang Ke, Feng Xiaohan, Guo Yurong, et al.Overview of deep convolutional neural networks for image classification [J]. Journal of Image and Graphics, 2021, 26(10): 2305-2325. |
[1] | Chen Weimei, Liu Xinwei, Wang Tiewei, Xu Wenkai, Li Juan. Recognition of pine wilt disease based on twolevel fusion deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 214-219. |
[2] | Wei Yuan, , , Su Qiang, , , Zeng Yangjuan, , , Du Jingjing, , , Qi Yongshun, , , , Wang Dongsheng, , , . Study on flying defense effect of chestnut based on multirotor plant protection UAV [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 82-88. |
[3] | Xu Lanjun, Sun Mengyao, Zhang Chuanshuai, Wang Di, Li Chuanyou, Wu Caicong. Effect of different driving modes of agricultural machinery on maize seedling rate: Calculation based on UAV multispectral image [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 143-147. |
[4] | Sun Mengyao, Hu Bingbing, Chen Hua, Chen Yumei, Wu Caicong, Xu Lanjun. Operation quality assessment of unmanned wheat system based on UAV remote sensing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 148-154. |
[5] | Wang Lei, Yuan Ying, Gao Ling. Tomato disease image recognition based on an improved multiverse optimizer algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 176-181. |
[6] | Qi Haixia, , Zou Jun, , Miao Qiushi, , Huang Guizhen, , Chen Yu, , Lan Yubin, . Effects of different operating parameters of multirotor UAV on the distribution characteristics of peanut canopy fog droplet deposition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 57-64. |
[7] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[8] | He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155. |
[9] | Liu Yuze, Sun Han, Li Mingyang, Li Mingxin, Kang Jutao, Wang Enhao.. Multilayer and regional feature integration models for finegrained visual classification [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 199-207. |
[10] | Guo Wei, Gao Chunfeng, Qiao Hongbo, Li Chengwei, Zhang Feng, Zhang Hui.. Severity monitoring of cotton spider mite based on UAV digital image [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 143-150. |
[11] | Yu Xueying, Gao Jiyong, Wang Shoucheng, Li Qingsheng, Wang Zhiqiang.. Apple disease recognition based on Wasserstein generative adversarial networks and hybrid attention mechanism residual network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 166-174. |
[12] | Lei Xuemei, Zhang Guangqiang, Yao Qi, Liu Weiwei, Qiu Shuai. . Research on automatic recognition of agricultural machine image based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 140-147. |
[13] | Wang Cong, Zhou Renjian, Zhu Xiaobo, Deng Jia, Luo Wuzhou, Shu Yanxin.. Effect of settling distance on droplet size distribution of plant protection UAV [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 53-59. |
[14] | Shen Qiyang, Zhu Hong, Yu Qingxu, Ge Xunyi, Qian Jun, Huang Wei. Experimental research on applicable performance of intelligent feeding equipment for river crab culture [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 51-59. |
[15] | Xu Xin, Li Chunhui, Zhao Liqing, Sun Ying, Duan Dongyao, Zheng Yinghui. Design of an accurate alignment system for fertilizer shovels based on OpenCV [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 142-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296