[1] 聂艳丽, 李翠萍, 王丽, 等. 种植规模及管理水平对澳洲坚果产量的影响[J]. 西南林业大学学报(自然科学), 2023,43(3): 161-168.
Nie Yanli, Li Cuiping, Wang Li, et al. Effects of planting scale and management level on Macadamia nut yield [J]. Journal of Southwest Forestry University (Natural Sciences), 2023, 43(3): 161-168.
[2] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
Liu Fang, Liu Yukun, Lin Sen, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237.
[3] Pan Y, Zhu N, Ding L, et al. Identification and Counting of Sugarcane Seedlings in the Field Using Improved Faster RCNN [J]. Remote Sensing, 2022, 14(22): 5846.
[4] Minagawa D, Kim J. Prediction of Harvest Time of Tomato Using Mask RCNN [J]. AgriEngineering, 2022, 4(2): 356-366.
[5] 李善军, 胡定一, 高淑敏, 等. 基于改进SSD的柑橘实时分类检测[J]. 农业工程学报, 2019, 35(24): 307-313.
Li Shanjun, Hu Dingyi, Gao Shumin, et al. Realtime classification and detection of citrus based on improved single short multibox detecter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 307-313.
[6] Hong W, Ma Z, Ye B, et al. Detection of green asparagus in Complex environments based on the Improved YOLOv5 algorithm [J]. Sensors, 2023, 23(3): 1562.
[7] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176.
Huang Shuangping, Sun Chao, Qi Long, et al. Rice panicle blast identification method based on deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 169-176.
[8] Li K, Wang J, Jalil H, et al. A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5 [J]. Computers and Electronics in Agriculture, 2023, 204: 107534.
[9] Khan A, Quadri S, Banday S, et al. Deep diagnosis: A realtime apple leaf disease detection system based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 198: 107093.
[10] Deng F, Mao W, Zeng Z,et al. Multiple diseases and pests detection based on federated learning and improved faster RCNN [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11.
[11] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害识图像识别[J]. 农业工程学报, 2018, 34(18): 194-201.
Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201.
[12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 580-587.
[13] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[14] He K, Gkioxari G, Dollár P, et al. Mask RCNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[15] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. European Conference on Computer Vision, Springer, Cham, 2016: 21-37.
[16] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
[17] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[18] Gao F, Fu L, Zhang X, et al. Multiclass fruitonplant detection for apple in SNAP system using Faster RCNN [J]. Computers and Electronics in Agriculture, 2020, 176: 105634.
[19] 岳有军, 田博凯, 王红君, 等. 基于改进Mask RCNN的复杂环境下苹果检测研究[J]. 中国农机化学报, 2019, 40(10): 128-134.
Yue Youjun, Tian Bokai, Wang Hongjun, et al. Research on apple detection in complex environment based on improved Mask RCNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(10): 128-134.
[20] Hao Q, Guo X, Yang F. Fast recognition method for multiple apple targets in complex occlusion environment based on improved YOLOv5 [J]. Journal of Sensors, 2023.
[21] Xie J, Peng J, Wang J, et al. Litchi Detection in a complex natural environment using the YOLOv5litchi model [J]. Agronomy, 2022, 12(12): 3054.
[22] Sun L, Hu G, Chen C, et al. Lightweight apple detection in complex orchards using YOLOV5PRE [J].Horticulturae, 2022, 8(12): 1169.
[23] Yang L, Zhang R Y, Li L, et al.SimAM: A simple, parameterfree attention module for convolutional neural networks [C]. International Conference on Machine Learning, PMLR, 2021: 11863-11874.
[24] Li H, Li J, Wei H, et al. Slimneck byGSConv: A better design paradigm of detector architectures for autonomous vehicles [J]. arXiv Preprint arXiv: 2206. 02424, 2022.
|