[1] 金子煜, 刘淑红, 周祥军. 葡萄冬季修剪技术浅析[J]. 南方农业, 2021, 15(5): 30-31, 40.
[2] 秦喜田, 刘学峰, 任冬梅, 等. 我国果园生产机械化现状及其发展趋势[J]. 农业装备与车辆工程, 2019, 57(S1): 35-38.
Qin Xitian, Liu Xuefeng, Ren Dongmei, et al. Current situation and development prospect of orchard mechanization in China [J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(S1): 35-38.
[3] 刘平, 朱衍俊, 张同勋, 等. 自然环境下贴叠葡萄串的识别与图像分割算法[J]. 农业工程学报, 2020, 36(6): 161-169.
Liu Ping, Zhu Yanjun, Zhang Tongxun, et al. Algorithm for recognition and image segmentation of overlapping grape cluster in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 161-169.
[4] 苏仕芳, 乔焰, 饶元. 基于迁移学习的葡萄叶片病害识别及移动端应用[J]. 农业工程学报, 2021, 37(10): 127-134.
Su Shifang, Qiao Yan, Rao Yuan. Recognition of grape leaf diseases and mobile application based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 127-134.
[5] Francesca C, Ermes M, Davide C, et al. Estimating leaf area index (LAI) in vineyards using the PocketLAI smart-app [J]. Sensors, 2016, 16(12): 2004.
[6] Fourie J, Bateman C, Hsiao J, et al. Towards automated grapevine pruning: Learning by example using recurrent graph neural networks [J]. International Journal of Intelligent Systems, 2021, 36(2): 715-735.
[7] 贾挺猛, 荀一, 鲍官军, 等. 基于机器视觉的葡萄树枝骨架提取算法研究[J]. 机电工程, 2013, 30(4): 501-504.
Jia Tingmeng, Xun Yi, Bao Guanjun, et al. Skeleton extraction algorithm on grapevine based on machine vision [J]. Journal of Mechanical & Electrical Engineering, 2013, 30(4): 501-504.
[8] Xu S, Xun Y, Jia T, et al. Detection method for the buds on winter vines based on computer vision [C]. 2014 Seventh In-ternational Symposium on Computational Intelligence and Design. IEEE, 2014, 2: 44-48.
[9] Botterill T, Paulin S, Green R, et al. A robot system for pruning grapevines [J]. Journal of Field Robotics, 2017, 34(6): 1100-1122.
[10] Pérez D S, Bromberg F, Diaz C A. Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines [J]. Computers and Electronics in Agriculture, 2017, 135: 81-95.
[11] Díaz C A, Pérez D S, Miatello H, et al. Grapevine buds detection and localization in 3D space based on structure from motion and 2D image classification [J]. Computers in Industry, 2018, 99: 303-312.
[12] Marset W V, Pérez D S, Díaz C A, et al. Towards practical 2D grapevine bud detection with fully convolutional networks [J]. Computers and Electronics in Agriculture, 2021, 182: 105947.
[13] Fernandes M, Scaldaferri A, Fiameni G, et al. Grapevine winter pruning automation: On potential pruning points detection through 2D plant modeling using grapevine segmentation [C]. 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2021: 13-18.
[14] Yang Q, Yuan Y, Chen Y, et al. Method for detecting 2D grapevine winter pruning location based on thinning algorithm and lightweight convolutional neural network [J]. International Journal of Agricultural and Biological Engineering, 2022, 15(3): 177-183.
[15] 傅隆生, 宋珍珍, Zhang Xin, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120.
Fu Longsheng, Song Zhenzhen, Zhang Xin, et al. Applications and research progress of deep learning in agriculture [J]. Journal of China Agricultural University, 2020, 25(2): 105-120.
[16] 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215.
Sun Jun, Tan Wenjun, Mao Hanping, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215.
[17] 龙洁花, 赵春江, 林森, 等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报, 2021, 37(18): 100-108.
Long Jiehua, Zhao Chunjiang, Lin Sen, et al. Segmentation method of the tomato fruits with different maturities under greenhouse environment based on improved Mask R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 100-108.
[18] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[19] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[20] 黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519-531.
Huang Peng, Zheng Qi, Liang Chao. Overview of image segmentation methods [J]. Journal of Wuhan University(Natural Science Edition), 2020, 66(6): 519-531.
[21] 刘硕. 阈值分割技术发展现状综述[J]. 科技创新与应用, 2020(24): 129-130.
[22] Russell B C, Torralba A, Murphy K P, et al. LabelMe: A database and web-based tool for image annotation [J]. International Journal of Computer Vision, 2008, 77(1): 157-173.
[23] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
[24] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
|