Journal of Chinese Agricultural Mechanization ›› 2024, Vol. 45 ›› Issue (2): 280-287.DOI: 10.13733/j.jcam.issn.2095-5553.2024.02.040
Previous Articles Next Articles
Zhang Weijin1, Wang Fushun1, 2, Sun Xiaohua3, Wang Junhao1, Liu Hongquan4, Wang Xinxin5, 6
Online:
2024-02-15
Published:
2024-03-20
张伟进1,王福顺1, 2,孙小华3,王军皓1,刘宏权4,王鑫鑫5, 6
基金资助:
CLC Number:
Zhang Weijin, Wang Fushun, , Sun Xiaohua, Wang Junhao, Liu Hongquan, Wang Xinxin, . Research progress of traditional image segmentation algorithm in seed testing of crops[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(2): 280-287.
张伟进, 王福顺, , 孙小华, 王军皓, 刘宏权, 王鑫鑫, . 传统图像分割算法在农作物籽粒考种应用中的研究进展[J]. 中国农机化学报, 2024, 45(2): 280-287.
[1] Jiang Ziqi, Zou Feng, Chen Debao, et al. An improved teaching-learning-based optimization for multilevel thresholding image segmentation [J]. Arabian Journal for Science and Engineering, 2021, 46(9): 8371-8396. [2] Sawant A. Flower recognition system based on image segmentation algorithms [J]. International Journal of Innovative Technology and Exploring Engineering, 2020, 9(3): 685-688. [3] Jung S, Cho Y, Lee K T, et al. Moving object detection with single moving camera and IMU sensor using mask R-CNN instance image segmentation [J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(6): 1049-1059. [4] Kotaridis I, Lazaridou M. Remote sensing image segmentation advances: A meta-analysis [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 309-322. [5] Divyameena S, Mangaleswaran M. A study on various image segmentation algorithms [J]. International Journal of Scientific Research in Science, Engineering and Technology, 2018: 272-276. [6] Koh J, Hayden M, Daetwyler H, et al. Estimation of crop plant density at early mixed growth stages using UAV imagery [J]. Plant Methods, 2019, 15(1): 1-9. [7] 吴文华. 基于图像的油菜表型参数测量方法研究[D]. 杭州: 浙江大学, 2019. Wu Wenhua. Study on measurement method of rapeseed phenotypic parameters based on image [D]. Hangzhou: Zhejiang University, 2019. [8] Cui Dandan, Cui Guoxian, Yang Ruifang, et al. Phenotypic characteristics of ramie (Boehmeria nivea L.) germplasm resources based on UAV remote sensing [J]. Genetic Resources and Crop Evolution, 2020, 68(2): 1-16. [9] 宋鹏, 张晗, 王成, 等. 玉米高通量自动考种装置设计与试验[J]. 农业工程学报, 2017, 33(16): 41-47. Song Peng, Zhang Han, Wang Cheng, et al. Design and experiment of high throughput automatic measuring device for corn [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 41-47. [10] 明雨阳. 基于图像处理的作物表型参量测量及生长状态监测方法研究[D]. 西安: 西安理工大学, 2020. Ming Yuyang. Research on method of crop phenotypic parameter measurement and growth status monitoring based on image processing [D]. Xian: Xian University of Technology, 2020. [11] 杨晓雪, 史晓刚. 计算机图像处理技术及其在农业工程中的应用[J]. 数字通信世界, 2021(10): 45-46, 50. Yang Xiaoxue, Shi Xiaogang. Computer image processing technology and its application in agricultural engineering [J]. Digital Communication World, 2021(10): 45-46, 50. [12] Mahajan S, Mittal N, Salgotra R, et al. An efficient adaptive SALP swarm algorithm using type Ⅱ fuzzy entropy for multilevel thresholding image segmentation [J]. Computational and Mathematical Methods in Medicine, 2022. [13] Ju Aiyun, Wang Zhongli. A novel fully convolutional network based on marker-controlled watershed segmentation algorithm for industrial soot robot target segmentation [J]. Evolutionary Intelligence, 2022, 16(3): 1-18. [14] Qiao Shuang, Yu Qinghan, Zhao Zhengwei, et al. Edge extraction method for medical images based on improved local binary pattern combined with edge-aware filtering [J]. Biomedical Signal Processing and Control, 2022, 74: 103490. [15] Vera J F, Macías R. On the behaviour of K-means clustering of a dissimilarity matrix by means of full multidimensional scaling [J]. Psychometrika, 2021, 86(2): 489-513. [16] Sun Aiyun, Jia Wenbao, Hei Daqian,et al. Application of concave point matching algorithm in segmenting overlapping coal particles in X-ray images [J]. Minerals Engineering, 2021, 171: 107096. [17] 肖乐意. Otsu图像分割法的改进与应用研究[D]. 长沙: 湖南大学, 2020. Xiao Leyi. Improvement and application of Otsu image segmentation method [D]. Changsha: Hunan University, 2020. [18] 刘杰, 安博文. 基于动态阈值分割的目标提取技术[J]. 红外技术, 2008, 30(12): 706-708, 712. Liu Jie, An Bowen. Object extraction technique based on dynamic threshold segmentation [J]. Infrared Technology, 2008, 30(12): 706-708, 712. [19] Otsu N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1): 62-66. [20] 李云红, 张秋铭, 周小计, 等. 基于形态学及区域合并的分水岭图像分割算法[J]. 计算机工程与应用, 2020, 56(2): 190-195. Li Yunhong, Zhang Qiuming, Zhou Xiaoji, et al. Watershed image segmentation algorithm based on morphology and region merging [J]. Computer Engineering and Applications, 2020, 56(2): 190-195. [21] 潘雄. 基于区域合并的图像分割算法研究[D]. 福州: 福建农林大学, 2020. Pan Xiong. Research on image segmentation algorithm based on region merging [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. [22] 陈斌斌, 范九伦, 雷博, 等. 基于SLIC超像素粒化的粗糙熵图像分割算法[J]. 传感器与微系统, 2022, 41(2): 105-107. Chen Binbin, Fan Jiulun, Lei Bo, et al. SLIC superpixel granulation-based rough entropy image segmentation algorithm [J]. Transducer and Microsystem Technologies, 2022, 41(2): 105-107. [23] Wang Yuting, Liao Zhouyu. A method for object extraction from crop image based on visual saliency [J]. Journal of Physics: Conference Series, 2022, 2171(1): 012007. [24] 黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519-531. Huang Peng, Zheng Qi, Liang Chao. Overview of image segmentation methods [J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(6): 519-531. [25] 张轩, 张新峰. 粘连颗粒图像分割方法综述[J]. 图像与信号处理, 2018, 7(3): 113-118. Zhang Xuan, Zhang Xinfeng. Summarization of image segmentation methods for adhesive particles [J]. Journal of Image and Signal Processing, 2018, 7(3): 113-118. [26] 高辉, 甄彤, 李智慧. 粘连颗粒图像的分割方法综述[J]. 中国粮油学报, 2022, 37(3): 186-194. Gao Hui, Zhen Tong, Li Zhihui. A review of segmentation methods for adhesive particle images [J]. Chinese Journal of Cereals and Oils, 2022,37(3):186-194. [27] 韩明芮, 杨玺. 基于图像处理的包装缺陷检测方法综述[J]. 中国储运, 2019(9): 110-112. [28] 马佳佳, 王克强, 郑奕雄, 等. 基于机器视觉的花生种子外观品质检测与分类方法研究[J]. 安徽农业科学, 2021, 49(10): 225-227, 231. Ma Jiajia, Wang Keqiang, Zheng Yixiong, et al. Research on the appearance quality detection and classification of peanut seeds based on machine vision [J]. Journal of Anhui Agricultural Sciences, 2021, 49(10): 225-227, 231. [29] 王建宇. 基于卷积神经网络的玉米籽粒精选系统研制[D]. 哈尔滨: 东北农业大学, 2019. Wang Jianyu. Development of corn kernel sorting system based on convolutional neural network [D]. Harbin: Northeast Agricultural University, 2019. [30] 张博. 基于深度学习的小麦外观品质机器视觉检测研究[D]. 杨凌: 西北农林科技大学, 2019. Zhang Bo. Machine vision detection of wheat appearance quality based on deep learning [D]. Yangling: Northwest A & F University, 2019. [31] 祝保林. 基于机器视觉的小桐子种子识别分类研究[D]. 开封: 河南大学, 2020. Zhu Baolin. Study on seed recognition and classification of Jatropha seed based on machine vision [D]. Kaifeng: Henan University, 2020. [32] 陈进, 顾琰, 练毅, 等. 基于机器视觉的水稻杂质及破碎籽粒在线识别方法[J]. 农业工程学报, 2018, 34(13): 187-194. Chen Jin, Gu Yan, Lian Yi, et al. Online recognition method of impurities and broken paddy grains based on machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 187-194. [32] Xue Yongan, Zhao Jinling, Zhang Mingmei. A watershed-segmentation-based improved algorithm for extracting cultivated land boundaries [J]. Remote Sensing, 2021, 13(5): 939. [34] Sun Quan, Zheng Junxing, Li Cheng. Improved watershed analysis for segmenting contacting particles of coarse granular soils in volumetric images [J]. Powder Technology, 2019, 356(C): 295-303. [35] Cao Wenxuan, Qiao Zeyu, Gao Zeyu,et al. Use of unmanned aerial vehicle imagery and a hybrid algorithm combining a watershed algorithm and adaptive threshold segmentation to extract wheat lodging [J]. Physics and Chemistry of the Earth, 2021, 123: 103016. [36] Gamarra M, Zurek E, Escalante H J,et al. Split and merge watershed: A two-step method for cell segmentation in fluorescence microscopy images [J]. Biomedical Signal Processing and Control, 2019, 53: 101575. [37] Zhao Min, Wu Wen Fu, Zhang Ya Qiu. The corn seed image segmentation and measurement of the geometrical features based on image analysis [J]. Applied Mechanics and Materials, 2011, 1326(66-68): 1100-1105. [38] Kuang Fangjun, Xu Weihong, Wang Yanhua. Novel watershed algorithm for touching rice image segmentation [J]. Advanced Materials Research, 2011, 1290(271-273): 1-6. [39] 蒋霓, 段凌凤, 杨万能, 等. 基于并行处理技术的谷物粒型快速测量算法[J]. 光电工程, 2012, 39(3): 66-71. Jiang Ni, Duan Lingfeng, Yang Wanneng, et al. Fast grain shape determination algorithm based on parallel processing [J]. Opto-Electronic Engineering, 2012, 39(3): 66-71. [40] 李锦明. 基于机器视觉的玉米考种技术研究[D]. 杭州: 杭州电子科技大学, 2019. Li Jinming. Research on maize seed examination technology based on machine vision [D]. Hangzhou: Hangzhou Dianzi University, 2019. [41] 孙晓婷, 陈江红, 陈庆周. 基于H-Dome重构的大豆图像分割[J]. 大豆科学, 2013, 32(6): 821-824. Sun Xiaoting, Chen Jianghong, Chen Qingzhou.Image segmentation of soybean based on H-Dome [J]. Soybean Science, 2013, 32(6): 821-824. [42] Berggren M, Caiazza S, Chera M,et al. Kinematic edge detection using finite impulse response filters [J]. Nuclear Inst and Methods in Physics Research, 2021, 1010: 165555. [43] Xu Hongyun, Xu Xiaoli, Zuo Yunbo. Applying morphology to improve Canny operators image segmentation method [J]. The Journal of Engineering, 2019, 2019(23): 8816-8819. [44] 侯雨, 曹丽英, 丁小奇, 等. 基于边缘检测和BP神经网络的大豆杂草识别研究[J]. 中国农机化学报, 2020, 41(7): 185-190. Hou Yu, Cao Liying, Ding Xiaoqi, et al. Research on soybean weed recognition based on edge detection and BP neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 185-190. [45] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. [46] Yadav D P. A method for human burn diagnosis using machine learning and SLIC superpixels based segmentation [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1116(1): 012186. [47] Shakir U, Naeem B, Muhammad Z. Adaptive tuning of SLIC parameter K [J]. Multimedia Tools and Applications, 2021, 80(17): 25649-25672. [48] 郑金云. 基于聚类的超像素分割方法研究[D]. 桂林: 桂林电子科技大学, 2021. Zheng Jinyun. Research on superpixel segmentation method based on clustering [D]. Guilin: Guilin University of Electronic Technology, 2021. [49] 何红霞. 基于机器视觉的小麦种子品种分类模型研究[D]. 合肥: 安徽农业大学, 2018. He Hongxia. Research on wheat seed variety classification model based on machine vision [D]. Hefei: Anhui Agricultural University, 2018. [50] 李咏豪. 基于超像素的粘连谷粒分割算法[J]. 数字技术与应用, 2021, 39(4): 110-112. Li Yonghao. Superpixel based adhesive grain kernel segmentation algorithm [J]. Digital Technology & Application, 2021, 39(4): 110-112. [51] 张宝全, 陆辉山, 王福杰, 等. 基于凹点分析法的粘连鸡体分割方法研究[J]. 中国农机化学报, 2021, 42(2): 164-170, 183. Zhang Baoquan, Lu Huishan, Wang Fujie, et al. Research on the segmentation method of adhesive chicken body based on concave point analysis [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 164-170, 183. [52] 王小鹏, 姚丽娟, 文昊天, 等. 形态学多尺度重建结合凹点匹配分割枸杞图像[J]. 农业工程学报, 2018, 34(2): 212-218. Wang Xiaopeng, Yao Lijuan, Wen Haotian, et al. Wolfberry image segmentation based on morphological multi-scale reconstruction and concave points matching [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 212-218. [53] 武威. 基于机器视觉技术的稻麦籽粒外观品质评测研究[D]. 扬州: 扬州大学, 2021. Wu Wei. Evaluation of grain appearance quality of rice and wheat based on machine vision technology [D]. Yangzhou: Yangzhou University, 2021. [54] 孙志恒. 基于深度学习的稻米垩白识别算法研究与应用[D]. 成都: 电子科技大学, 2019. Sun Zhiheng. Research and application of rice chalkiness recognition algorithm based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2019. [55] 刘宰豪. 基于凹点和重心检测的粘连类圆形目标图像分割[D]. 西安: 西安电子科技大学, 2019. Liu Zaihao. Image segmentation of conglutination circular target based on concave point and center of gravity detection [D]. Xian: Xidian University, 2019. [56] 樊蒙蒙. 基于PCNN和凹点的粘连大米图像分割[D]. 郑州: 河南工业大学, 2019. Fan Mengmeng. Image segmentation of bonded rice based on PCNN and concave point [D]. Zhengzhou: Henan University of Technology, 2019. [57] Lin P, Chen Y M, He Y, et al. A novel matching algorithm for splitting touching rice kernels based on contour curvature analysis [J]. Computers and Electronics in Agriculture, 2014, 109: 124-133. [58] 布芳. 基于卷积神经网络的小目标检测与分割算法研究[D]. 西安: 西安电子科技大学, 2019. Bu Fang. Research on small target detection and segmentation algorithm based on convolutional neural network [D]. Xian: Xidian University, 2019. |
[1] | Dong Yalan, Hu Guoyu, Liu Guang, Gulbahar Tohti. Segmentation method for grapevine critical structure based on Mask R-CNN model [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(2): 207-214. |
[2] | Huang Jiacai, Wang Tao, Zhang Duo, Tang An, Gao Fangzheng. Recognition and localization of strawberry stalk leaf based on improved YOLOv4 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(9): 205-213. |
[3] | Li Hang, Liao Yinghua, Huang Bo. Research on path planning of tea picking manipulator based on improved DQN [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 198-205. |
[4] | Ruan Chengzhi, Lin Genshen, Chen Xu, Sun Yueping, Yang Jun, Zhao Dean. Navigation line fitting method of crab pond aquatic plant image based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 147-153. |
[5] | Ge Xiang, Lu Jun, Cao Donglin, Jin Tianshu. Image segmentation of adhesive droplets based on contour solidness and watershed algorithm on leaves [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 182-191. |
[6] | Zhou Xianqin, Han Zhenyu, Liu Chengyuan. Silkworm cocoon identification method based on improved convolution neural network and image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 100-106. |
[7] | Zhou Pengfei, Meng Hewei, , , Liang Rongqing, Zhang Bingcheng, Kan Za, , . Experiment on the dynamic angle of repose of soil particles based on OpenCV-Python [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 214-222. |
[8] | Wang Heng, Zhang Weiyi, Li Chengsong, , , Wang Pei, Wang Lihong, , . Research on the navigation path detection method of fruit tree drop line based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 183-190. |
[9] | Ren Hao, Li Li, Lu Shibo, Chen Jingyao, Zhang Yunfeng.. Identification method of mulberry tree branches in complex natural environments based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 182-188. |
[10] | Shen Zhonghua, Xia Aiqiang, Dong Zhikang, Chen Wanwei, Cao Weihua. Study on image segmentation method of sugarcane tip in complex environment [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(12): 113-118. |
[11] | Qin Changyou, Yang Yanshan, Gu Fengwei, Chen Panyang, Qin Weicai. Application and development of computer vision technology in modern agriculture [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(12): 119-128. |
[12] | Zhu Lusheng, Xu Minya, Wang Aichen, Zhang Dongfeng, Qian Weihao, Li Chuan. Research on rice growth density detection at maturity stage based on improved DeepLabV3+ [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(12): 186-192. |
[13] | Wang Dong, , Duan Lian, Zhao Run, Gu Huabing, , Li Shoufeng, Zhao Zhenhua. Research on determination method of comb area and color grade based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 152-158. |
[14] | Zhou Wenjing, Zhao Kang, Ma Xiaoxiao, Tian Zhifang.. Image segmentation of grape cluster based on improved redgreen difference and Otsu [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 172-177. |
[15] | Liang Xifeng, Hua Rui, Yang Mingtao. . Research on the visual servo control system of tomato branch and leaf pruning manipulator [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 8-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296