[ 1 ] 崔浩楠, 朱强龙, 朱子成, 等. 甜瓜白粉病及其抗性分子遗传研究进展[J]. 中国瓜菜, 2018, 31(3): 1-7.
Cui Haonan, Zhu Qianglong, Zhu Zicheng, et al. Advance on powdery mildew and molecular genetic base of resistance in melon [J]. China Cucurbits and Vegetables, 2018, 31(3): 1-7.
[ 2 ] 李鑫星, 朱晨光, 白雪冰, 等. 基于可见光谱和支持向量机的黄瓜叶部病害识别方法研究[J]. 光谱学与光谱分析, 2019, 39(7): 2250-2256.
Li Xinxing, Zhu Chenguang, Bai Xuebing, et al. Recognition method of cucumber leaves diseases based on visual spectrum and support vector machine [J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2250-2256.
[ 3 ] 李凯雨, 张慧, 马浚诚, 等. 基于语义分割和可见光谱图的作物叶部病斑分割方法[J]. 光谱学与光谱分析, 2023, 43(4): 1248-1253.
Li Kaiyu, Zhang Hui, Ma Juncheng, et al. Segmentation method for crop leaf spot based on semantic segmentation and visible spectral images [J]. Spectroscopy and Spectral Analysis, 2023, 43(4): 1248-1253.
[ 4 ] 赵晓阳, 张建, 张东彦, 等. 低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究[J]. 光谱学与光谱分析, 2019, 39(4): 1192-1198.
Zhao Xiaoyang, Zhang Jian, Zhang Dongyan, et al. Comparison between the effects of visible light and multispectral sensor based on low altitude remote sensing platform in the evaluation of rice sheath blight [J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1192-1198.
[ 5 ] 张昭, 王鹏, 姚志凤, 等. 基于多光谱荧光成像技术和SVM的葡萄霜霉病早期检测研究[J]. 光谱学与光谱分析, 2021, 41(3): 828-834.
Zhang Zhao, Wang Peng, Yao Zhifeng, et al. Eary detection of downy mildew on grape leaves using multicolor fluorescence imaging and model SVM [J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 828-834.
[ 6 ] 刘浪, 许金钗, 翁海勇, 等. 基于多光谱成像技术的水稻叶部病害检测装置设计与试验[J]. 福建农林大学学报(自然科学版), 2023, 52(2): 280-284.
Liu Lang, Xu Jinchai, Weng Haiyong, et al. Development of a portable detection device for rice leaf diseases using multispectral imaging [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(2): 280-284.
[ 7 ] 张凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报, 2021, 25(1): 403-422.
[ 8 ] 徐衍向, 张敬智, 兰玉彬, 等. 基于红外热成像和机器学习的作物早期病害识别研究进展[J]. 中国农机化学报, 2023, 44(5): 188-197.
Xu Yanxiang, Zhang Jingzhi, Lan Yubin, et al. Research progress of early crop disease identification based on infrared thermal imaging and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 188-197.
[ 9 ] 谢亚平, 陈丰农, 张竞成, 等. 基于高光谱技术的农作物常见病害监测研究[J]. 光谱学与光谱分析, 2018, 38(7): 2233-2240.
Xie Yaping, Cheng Fengnong, Zhang Jingcheng, et al. Study on monitoring of common diseases of crops based on hyperspectral technology [J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2233-2240.
[10] 康丽, 袁建清, 高睿, 等. 高光谱成像的水稻稻瘟病早期分级检测[J]. 光谱学与光谱分析, 2021, 41(3): 898-902.
Kang Li, Yuan Jianqing, Gao Rui, et al. Early detection and identification of rice blast based on hyperspectral image [J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 898-902.
[11] 程术希, 谢传奇, 王巧男, 等. 不同波长提取方法的高光谱成像技术检测番茄叶片早疫病的研究[J]. 光谱学与光谱分析, 2014, 34(5): 1362-1366.
Cheng Shuxi, Xie Chuanqi, Wang Qiaonan, et al. Different wavelengths selection methods for identification of early blight on tomato leaves by using hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1362-1366.
[12] 吴叶兰, 陈怡宇, 廉小亲, 等. 高光谱成像的柑橘病虫害叶片识别方法[J]. 光谱学与光谱分析, 2021, 41(12): 3837-3843.
Wu Yelan, Chen Yiyu, Lian Xiaoqin, et al. Study on the identification method of citrus leaves based on hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3837-3843.
[13] 赵森, 付芸, 崔江南, 等. 高光谱的刺五加黑斑病的早期检测研究[J]. 光谱学与光谱分析, 2021, 41(6): 1898-1904.
Zhao Sen, Fu Yun, Cui Jiangnan, et al. Application of hyperspectral imaging in the diagnosis of acanthopanax senticosus black spot disease [J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1898-1904.
[14] 刘燕德, 姜小刚, 周衍华, 等. 基于高光谱成像技术对脐橙叶片的叶绿素、水分和氮素定量分析[J]. 中国农机化学报, 2016, 37(3): 218-224.
Liu Yande, Jiang Xiaogang, Zhou Yanhua, et al. Quantitative analysis of chlorophyll、water and nitrogen for Nacel orange leaf based on hyperspectral imaging technology [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 218-224.
[15] Zhao G, Pei Y, Yang R, et al. A non‑destructive testing method for early detection of ginseng root diseases using machine learning technologies based on leaf hyperspectral reflectance [J]. Frontiers in Plant Science, 2022, 13: 1031030.
[16] Tapia R, Abd‑Elrahman A, Osorio L, et al. Combining canopy reflectance spectrometry and genome‑wide prediction to increase response to selection for powdery mildew resistance in cultivated strawberry [J]. Journal of Experimental Botany, 2022, 73(15): 5322-5335.
[17] Fernández C I, Leblon B, Wang J, et al. Cucumber powdery mildew detection using hyperspectral data [J]. Canadian Journal of Plant Science, 2021, 102(1): 20-32.
[18] Wang Q, Zhang S, Xu J, et al. Monitoring the infection of powdery mildew pathogen on strawberry leaves by ATR-IR technique [J]. Journal of Phytopathology, 2022, 170(9): 579-587.
[19] Xuan G, Li Q, Shao Y, et al. Early diagnosis and pathogenesis monitoring of wheat powdery mildew caused by blumeria graminis using hyperspectral imaging [J]. Computers and Electronics in Agriculture, 2022, 197: 106921.
[20] 冯子恒, 李晓, 段剑钊, 等. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[21] 蔡苇荻, 张羽, 刘海燕, 等. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126.
Cai Weidi, Zhang Yu, Liu Haiyan, et al. Early detection on wheat canopy powdery mildew with hyperspectral imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
|