[ 1 ] Gao Z M, Khot L R, Naidu R A, et al. Early detection of grapevine leafroll disease in a red‑berried wine grape cultivar using hyperspectral imaging [J]. Computers and Electronics in Agriculture, 2020, 179: 105807.
[ 2 ] Fajardo J U, Andrade O B, Bonilla R C, et al. Early detection of black Sigatoka in banana leaves using hyperspectral images [J]. Applications in Plant Sciences, 2020, 8(8): e11383.
[ 3 ] Fazari A, Pellicer‑Valero O J, Gomez‑Sanchis J, et al. Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images [J]. Computers and Electronics in Agriculture, 2021, 187: 106252.
[ 4 ] 桂江生, 吴子娴, 李凯. 基于卷积神经网络模型的大豆花叶病初期高光谱检测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 256-262.
Gui Jiangsheng, Wu Zixian, Li Kai, et al. Hyperspectral imaging for early detection of soybean mosaic disease based on convolutionalneural network model [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 256-262.
[ 5 ] Pan T T, Chyngyz E, Sun D W, et al. Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging [J]. Postharvest Biology and Technology, 2019, 154: 96-104.
[ 6 ] 刘媛媛, 张凡, 师琪, 等. 基于高光谱和集成学习的库尔勒香梨黑斑病潜育期诊断[J]. 农业机械学报, 2022, 53(6): 295-303.
Liu Yuanyuan, Zhang Fan, Shi Qi, et al. Diagnosis of korla pear black spot disease in incubation period based on hyperspectral imaging and ensemble learning algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 295-303.
[ 7 ] 温淑娴, 李绍稳, 金秀, 等. 基于高光谱的砀山酥梨炭疽病害等级分类研究[J]. 计算机科学, 2017, 44(S1): 216-219, 223.
Wen Shuxian, Li Shaowen, Jin Xiu, et al. Research on anthrax disease classification of dangshan pear based on hyperspectral imaging technology [J]. Computer Science, 2017, 44(S1): 216-219, 223.
[ 8 ] Bagheri N, Mohamadi‑Monavar H, Azizi A, et al. Detection of fire blight disease in pear trees by hyperspectral data [J]. European Journal of Remote Sensing, 2018, 51(1): 1-10.
[ 9 ] 刘红芸, 吴雪梅, 李德仑, 等. 基于高光谱技术的采摘期烟叶水分含量研究[J]. 中国农机化学报, 2021, 42(9): 157-163.
Liu Hongyun, Wu Xuemei, Li Delun, et al. Study on the moisture content of tobacco leaves during the picking period based on hyperspectral technology [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 157-163.
[10] 张帅堂, 王紫烟, 邹修国, 等. 基于高光谱图像和遗传优化神经网络的茶叶病斑识别[J]. 农业工程学报, 2017, 33(22): 200-207.
Zhang Shuaitang, Wang Ziyan, Zou Xiuguo, et al. Recognition of tea disease spot based on hyperspectral image and genetic optimization neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 200-207.
[11] 刘美辰, 薛河儒, 刘江平, 等. 牛奶蛋白质含量的SSA-SVM高光谱预测模型[J]. 光谱学与光谱分析, 2022, 42(5): 1601-1606.
Liu Meichen, Xue Heru, Liu Jiangping, et al. Hyperspectral analysis of milk protein content using SVM optimized by sparrow search algorithm [J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1601-1606.
[12] 姜洪喆, 杨雪松, 李兴鹏, 等. 油茶果自然霉变程度的可见/近红外与中短波近红外光谱检测[J]. 食品科学, 2023, 44(4): 272-277.
[13] Xuan G T, Li Q K, Shao Y Y, et al. Early diagnosis and pathogenesis monitoring of wheat powdery mildew caused by blumeria graminis using hyperspectral imaging [J]. Computers and Electronics in Agriculture, 2022, 197: 106921.
(上接第 161 页)
[12] Huete A R. Mapping paddy rice with multi‑date moderate‑resolution imaging spectroradiometer (MODIS) data in China [J]. Journal of Zhejiang University(Science A: An International Applied Physics & Engineering Journal), 2009, 10(10): 1509-1522.
[13] Liu H Q, Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise [J]. IEEE Trans. Geoscience and Remote Sensing, 1995, 33(2): 457-465.
[14] Prabhakar M, Prasad Y G, Thirupathi M, et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae) [J]. Computers and Electronics in Agriculture, 2011, 79(2): 189-198.
[15] Jordan C F. Derivation of leaf‑area index from quality of light on the forest floor [J]. Ecology, 1969, 50(4): 663-666.
[16] Woebbecke D M, Meyer G E , Von Bargen K, et al. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Transactions of the ASAE, 1995, 38(1): 259-269.
[17] Gitelson A A, Stark R, Grits U, et al. Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction [J]. International Journal of Remote Sensing, 2002, 23(13): 2537-2562.
[18] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages [J]. Remote Sensing of Environment, 2002, 81(2): 337-354.
[19] Mao D, Wu X, Deppong C, et al. Negligible role of antibodies and C5 in pregnancy loss associated exclusively with C3‑dependent mechanisms through complement alternative pathway[J]. Immunity, 2003, 19(6): 813-822.
[20] 安葳鹏, 程小博, 刘雨. Fleiss' Kappa系数在贝叶斯决策树算法中的应用[J]. 计算机工程与应用, 2020, 56(7): 137-140.
An Weipeng, Cheng Xiaobo, Liu Yu. Application of Fleiss' Kappa coefficient in Bayesian decision tree algorithm [J]. Computer Engineering and Applications, 2020, 56(7): 137-140.
[21] 张殿岱, 王雪梅. 基于高分辨率遥感影像的植被分类方法比较[J]. 林业资源管理, 2021(3): 108-113.
Zhang Diandai, Wang Xuemei. Comparison of vegetation classification methods based on high‑resolution remote sensing images [J]. Forest Resources Management, 2021(3): 108-113.
[22] 魏梦凡. 基于Sentinel-2A卫星遥感影像的开封市冬小麦种植面积提取技术研究[D]. 开封: 河南大学, 2019.
|