[ 1 ] 陈上, 窦子荷, 蒋腾聪, 等. 基于聚类法筛选历史相似气象数据的玉米产量DSSAT-CERES-Maize预测[J]. 农业工程学报, 2017, 33(19): 147-155.
Chen Shang, Dou Zihe, Jiang Tencong, et al. Maize yield forecast with DSSAT-CERES-Maize model driven by historical meteorological data of analogue years by clustering algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 147-155.
[ 2 ] 竞霞, 邹琴, 白宗璠, 等. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
[ 3 ] 岑海燕, 朱月明, 孙大伟, 等. 深度学习在植物表型研究中的应用现状与展望[J]. 农业工程学报, 2020, 36(9): 1-16.
Cen Haiyan, Zhu Yueming, Sun Dawei, et al. Current status and future perspective of the application of deep learning in plant phenotype research [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 1-16.
[ 4 ] Cai Y, Guan K, Lobell D, et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches [J]. Agricultural and forest meteorology, 2019, 274: 144-159.
[ 5 ] Filippi P, Jones J E, Wimalathunge S N, et al. An approach to forecast grain crop yield using multi‑layered, multi‑farm data sets and machine learning [J]. Precision Agriculture, 2019, 20(5): 1015-1029.
[ 6 ] 张颖, 赵宽辽, 路燕. 我国玉米生产要素贡献率和地区差异实证分析——基于21个玉米主产省(区、市)的面板数据[J]. 河南农业科学, 2013, 42(8): 182-185.
[ 7 ] 李静, 陈桂芬, 安宇. 基于优化卷积神经网络的玉米螟虫害图像识别[J]. 华南农业大学学报, 2020, 41(3): 110-116.
[ 8 ] Crane‑Droesch A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture [J]. Environmental Research Letters, 2018, 13(11): 114003.
[ 9 ] Chen Y, Zhang Z, Tao F. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data [J]. European Journal of Agronomy, 2018, 101: 163-173.
[10] 崔颖, 蔺宏宏, 谢云, 等. AquaCrop模型在东北黑土区作物产量预测中的应用研究[J]. 作物学报, 2021, 47(1): 159-168.
[11] 王国栋, 姜明, 盛春蕾, 等. 湿地生态学的研究进展与展望[J]. 中国科学基金, 2022, 36(3): 364-375.
[12] 杨艳昭, 杨玲, 张伟科, 等. 西辽河流域玉米水分平衡时空分布格局[J]. 干旱区资源与环境, 2014, 28(4): 147-152.
[13] Kuradusenge M, Hitimana E, Hanyurwimfura D, et al. Crop yield prediction using machine learning models: Case of Irish potato and maize [J]. Agriculture, 2023, 13(1): 225.
[14] 杜兆辉, 和贤桃, 杨丽, 等. 玉米精准变量播种技术与装备研究进展[J]. 农业工程学报, 2023, 39(9): 1-16.
Du Zhaohui, He Xiantao, Yang Li, et al. Research progress on precision variable‑rate seeding technology and equipment for maize [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 1-16.
[15] 彭慧文, 赵俊芳, 谢鸿飞, 等. 作物模型应用与遥感信息集成技术研究进展[J]. 中国农业气象, 2022, 43(8): 644-656.
[16] 刘帅兵, 杨贵军, 景海涛, 等. 基于无人机数码影像的冬小麦氮含量反演[J]. 农业工程学报, 2019, 35(11): 75-85.
Liu Shuaibing, Yang Guijun, Jing Haitao, et al. Retrieval of winter wheat nitrogen content based on UAV digital image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 75-85.
[17] 吴永清, 李明, 张波, 等. 高光谱成像技术在谷物品质检测中的应用进展[J]. 中国粮油学报, 2021, 36(5): 165-173.
[18] 马红雨, 李仙岳, 孙亚楠, 等. 基于无人机遥感的不同控释肥夏玉米SPAD差异性[J]. 排灌机械工程学报, 2023, 41(12): 1261-1267.
[19] 郭占强, 肖国举, 李秀静, 等. 不同土壤有机碳含量对玉米光合生理及生长发育的影响[J]. 干旱地区农业研究, 2022, 40(1): 238-246.
[20] 王玉娜, 李粉玲, 王伟东, 等. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报, 2020, 36(22): 31-39.
Wang Yuna, Li Fenling, Wang Weidong, et al. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 31-39.
[21] 张孟豪, 吴玲, 陈静, 等. 蚯蚓对废纸屑再利用及养分贫瘠土壤综合质量的影响[J]. 生态学报, 2022, 42(12): 5034-5044.
[22] 李百云, 李慧, 郭鑫年, 等. 基于最小数据集的宁夏耕地土壤质量评价[J]. 江苏农业科学, 2021, 49(9): 195-201.
[23] 陈蒙蒙, 兰玉彬, 王国宾, 等. 基于土壤多参数监测系统的田间持水量试验研究[J]. 中国农机化学报, 2021, 42(1): 130-135, 244.
Chen Mengmeng, Lan Yubin, Wang Guobin, et al. Experimental study on field capacity based on soil multi‑parameter monitoring system [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(1): 130-135, 244.
[24] 赵金龙, 张学艺, 李阳. 机器学习算法在高光谱感知作物信息中的应用及展望[J]. 中国农业气象, 2023, 44(11): 1057-1071.
[25] 周培诚, 程塨, 姚西文, 等. 高分辨率遥感影像解译中的机器学习范式[J]. 遥感学报, 2021, 25(1): 182-197.
[26] 王敏钰, 罗毅, 张正阳, 等. 植被物候参数遥感提取与验证方法研究进展[J]. 遥感学报, 2022, 26(3): 431-455.
[27] Feng X, Yu C, Chen Y, et al. Non‑destructive determination of shikimic acid concentration in transgenic maize exhibiting glyphosate tolerance using chlorophyll fluorescence and hyperspectral imaging [J]. Frontiers in plant science, 2018, 9: 468.
[28] 贺佳, 王来刚, 郭燕, 等. 基于无人机多光谱遥感的玉米LAI估算研究[J]. 农业大数据学报, 2021, 3(4): 20-28.
[29] 韩文霆, 彭星硕, 张立元, 等. 基于多时相无人机遥感植被指数的夏玉米产量估算[J]. 农业机械学报, 2020, 51(1): 148-155.
Han Wenting, Peng Xingshuo, Zhang Liyuan, et al. Summer maize yield estimation based on vegetation index derived from multi‑temporal UAV remote sensing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 148-155.
[30] 袁玉琦, 陈瀚阅, 张黎明, 等. 基于多变量与RF算法的耕地土壤有机碳空间预测研究——以福建亚热带复杂地貌区为例[J]. 土壤学报, 2021, 58(4): 887-899.
[31] 潘根兴, 丁元君, 陈硕桐, 等. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[32] Liu T, Xu T, Yu F, et al. A method combining ELM and PLSR (ELM-P) for estimating chlorophyll content in rice with feature bands extracted by an improved ant colony optimization algorithm [J]. Computers and Electronics in Agriculture, 2021, 186: 106177.
[33] 张亚倩, 骆社周, 王成, 等. 联合无人机激光雷达和高光谱数据反演玉米叶面积指数[J]. 遥感技术与应用, 2022, 37(5): 1097-1108.
[34] 谭先明, 张佳伟, 王仲林, 等. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138.
[35] 欧阳玲, 毛德华, 王宗明, 等. 基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析[J]. 农业工程学报, 2017, 33(11): 147-156, 316.
Ouyang Ling, Mao Dehua, Wang Zongming, et al. Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 147-156, 316.
[36] 王宏轩, 于珍珍, 李海亮, 等. 基于GA-BP神经网络的鲜食玉米产量预测[J]. 中国农机化学报, 2024, 45(6): 156-162.
Wang Hongxuan, Yu Zhenzhen, Li Hailiang, et al. Fresh corn yield prediction based on GA-BP neural network [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 156-162.
|