English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (7): 160-165.DOI: 10.13733/j.jcam.issn.2095-5553.2024.07.024

• 车辆与动力工程 • 上一篇    下一篇

玉米收获机发动机服役状态趋势分析与预警

唐可记1,孙文磊2,杨炀1,孔德龙1   

  1. 1. 新疆大学商学院,乌鲁木齐市,830047; 2. 新疆大学智能制造现代产业学院,乌鲁木齐市,830047
  • 出版日期:2024-07-15 发布日期:2024-06-24
  • 基金资助:
    新疆维吾尔自治区重点研发计划项目(2020B02014)

Trend analysis and early warning of engine service status of corn harvester 

Tang Keji1, Sun Wenlei2, Yang Yang1, Kong Delong1   

  1. 1. School of Business, Xinjiang University, Urumqi, 830047, China;
    2. School of Modern Industry of Intelligent Manufacturing, Xinjiang University, Urumqi, 830047, China
  • Online:2024-07-15 Published:2024-06-24

摘要: 为提高服役状态下玉米收获机发动机运行的稳定性,以发动机运行数据为分析对象,计算发动机的一个稳定性运行趋势曲线,用以判断发动机是否处于稳定性状态。首先通过获取发动机ECU系统中的运行数据,对发动机正常运行下的数据进行归一化处理,然后基于遗传算法优化的BP神经网络建立预测模型。以发动机转速、农机速度、冷却液温度、系统电压4个参数作为输入对机油压力的数值进行预测,最终预测模型的决定系数达到0.88,证明预测模型拟合度较高,能准确地对发动机的机油压力做出预测。而发动机在正常运行的情况下,机油压力的预测偏差较小,以大量正常运行的机油压力预测值与实际运行值的残差结合实际运行值构建基准向量集合,再以20 000条正常的机油压力的运行预测值与实际运行值的残差结合实际运行值构建评估向量,利用马氏距离计算每个评估向量到基准向量集合的距离值,该距离值可代表发动机正常运行状态下的一个稳定性的指标值。结果表明:得到的20 000个指标值具有一定的聚集性,指标值的大小稳定在0~10之间,所以该指标值在时间序列的一个趋势曲线可以代表发动机服役状态下的一个稳定的趋势,用以判断发动机处于正常或异常状态。

关键词: 玉米收获机, 发动机, 机器学习, 状态预测, 马氏距离, 趋势分析

Abstract: In order to improve the operating stability of the corn harvester engine in service, the engine operation data is taken as the analysis object, and a stability operation trend curve of the starter is calculated to judge whether the engine is in a stable state. Firstly, by obtaining operational data from the engine ECU system, the data under normal engine operation is normalized. Then, a prediction model is established based on a BP neural network optimized by genetic algorithm. Predicting the numerical value of oil pressure using four parameters: engine speed, agricultural machinery speed, coolant temperature, and system voltage as inputs, and the final decision coefficient of the prediction model reaches 0.88, which proves that the prediction model has a high degree of fit and can accurately predict the engine oil pressure. Under normal operation of the engine, the predicted deviation of oil pressure is relatively small. The benchmark vector set is constructed by combining the residual of a large number of normal operation oil pressure predicted values and actual operation values with the actual operation values, and the evaluation vector is constructed by combining the residual of 20 000 normal operation oil pressure predicted values and actual operation values with the actual operation values. The distance value between each evaluation vector and the reference vector set is calculated by using Markov distance. This distance value can represent a stability index value under the normal operation state of the engine. The analysis results show that the 20 000 index values obtained have a certain aggregation, and the index value is stable between 0 and 10. Therefore, a trend curve of this index value in the time series can represent a stable trend under the service state of the engine, and can be used to judge whether the engine is in normal or abnormal state.

Key words: corn harvester, engine, machine learning, state prediction, Mahalanobis distance, trend analysis

中图分类号: