[1] 翟长远, 杨硕, 王秀, 等. 农机装备智能测控技术研究现状与展望[J]. 农业机械学报, 2022, 53(4): 1-20.
Zhai Changyuan, Yang Shuo, Wang Xiu, et al. Status and prospect of intelligent measurement and control technology for agricultural equipment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 1-20.
[2] 张真, 迟瑞娟, 杜岳峰, 等. 基于CAN总线的玉米收获智能控制系统研究[J]. 农业机械学报, 2018, 49(S1): 275-281.
Zhang Zhen, Chi Ruijuan, Du Yuefeng, et al. Investigation on CANbusbased corn harvester intelligent control system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 275-281.
[3] 崔涛, 樊晨龙, 张东兴, 等. 玉米机械化收获技术研究进展分析[J]. 农业机械学报, 2019, 50(12): 1-13.
Cui Tao, Fan Chenlong, Zhang Dongxing, et al. Research progress of maize mechanized harvesting technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 1-13.
[4] 杜志伟, 郝凤琦, 程广河, 等. 基于物联网的农机状态监控系统研究[J]. 中国农机化学报, 2019, 40(11): 189-194.
Du Zhiwei, Hao Fengqi, Cheng Guanghe, et al. Research on agricultural machinery state monitoring terminal based on Internet of Things [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 189-194.
[5] 孔德刚, 赵永超, 刘立意, 等. 大功率农机作业效率与机组合理运用模式的研究[J]. 农业工程学报, 2008(8): 143-146.
Kong Degang, Zhao Yongchao, Liu Liyi, et al. Investigation of work efficiency of highpower agricultural machinery and reasonable application pattern of tractorimplement units [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008(8): 143-146.
[6] 康康, 陈忠国, 王林凤, 等. 基于物联网的移动式农机设备监控系统[J]. 江苏农业科学, 2018, 46(1): 169-173.
Kang Kang, Chen Zhongguo, Wang Linfeng, et al. Monitoring system of mobile agricultural machinery equipment based on Internet of Things [J]. Jiangsu Agricultural Sciences, 2018, 46(1): 169-173.
[7] 林毅, 吉鸿江, 韩佳佳, 等. 一种基于马氏距离的系统故障诊断方法[J]. 计算机科学, 2020, 47(S2): 57-63.Lin Yi, Ji Hongjiang, Han Jiajia, et al. System fault diagnosis method based on mahalanobis distance metric [J]. Computer Science, 2020, 47(S2): 57-63.
[8] 纪玉清, 欧冬秀, 李永燕, 等. 基于数据驱动的轨道电路故障预测及预警方法研究[J]. 城市轨道交通研究, 2022, 25(7): 30-33.Ji Yuqing, Ou Dongxiu, Li Yongyan, et al. Research ondatadriven methods of fault prediction and early warning for track circuits [J]. Urban Mass Transit, 2022, 25(7): 30-33.
[9] 徐勇. 基于大数据的船舶故障趋势预测[J]. 舰船科学技术, 2021, 43(18): 178-180.Xu Yong. Ship fault trend prediction based on big data [J]. Ship Science and Technology, 2021, 43(18): 178-180.
[10] Benesty J, Chen Jingdong, Huang Yiteng, et al. Pearson correlation coefficient [J]. Noise Reduction in Speech Processing. Springer, 2009: 1-4.
[11] 邵凡, 陈辰, 葛淼佳, 等. 基于电网线损的皮尔逊算法分析[J]. 科技创新与应用, 2017(14): 54-55.
[12] 汤荣志, 段会川, 孙海涛, 等. SVM训练数据归一化研究[J]. 山东师范大学学报(自然科学版), 2016, 31(4): 60-65.〖JP2〗Tang Rongzhi, Duan Huichuan, Sun Haitao, et al. Research on data normalization for SVM training [J]. Journal of Shandong Normal University (Natural Science), 2016, 31(4): 60-65.
[13] 肖乾浩. 基于机器学习理论的机械故障诊断方法综述[J]. 现代制造工程, 2021(7): 148-161.
Xiao Qianhao. Review on mechanical fault diagnosis methods based on machine learning theories [J]. Modern Manufacturing Engineering, 2021(7): 148-161.
[14] 牛华. 基于改进BP神经网络的汽车发动机故障诊断[J]. 组合机床与自动化加工技术, 2021(5): 57-61.Niu Hua. Fault diagnosis of automobile engine basedon improved BP netural network [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(5): 57-61.
[15] 俞美鑫, 施卫, 蒋龙, 等. 基于GA-BP神经网络的动力锂电池SOC估算[J]. 电子技术应用, 2020, 46(1): 104-107, 112.Yu Meixin, Shi Wei, Jiang Long, et al. SOC estimation of power lithium battery based on GA-BP neural network [J]. Application of Electronic Technique, 2020, 46(1): 104-107, 112.
[16] 鹿宇, 李锐, 高岩, 等. 热力站日供热量影响因素筛选与神经网络预测[J]. 煤气与热力, 2022, 42(5): 6-9, 36.Lu Yu, Li Rui, Gao Yan, et al. Screening of influencing factors of daily heating capacity of heating stations and neural network prediction [J]. Gas & Heat, 2022, 42(5): 6-9, 36.
[17] Maesschalck R D, JouanRimbaud D, Massart D L. The Mahalanobis distance [J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1): 1-18.
[18] 安宗文, 张永明, 马强, 等. 基于核密度估计的性能退化数据建模分析方法[J]. 兰州理工大学学报, 2019, 45(3): 34-38.
An Zongwen, Zhang Yongming, Ma Qiang, et al. Analysis method of product performance degradation with data modeling based on kernel density estimation [J]. Journal of Lanzhou University of Technology, 2019, 45(3): 34-38.
|