[1] 温小红, 谢明杰, 姜健, 等. 水稻稻瘟病防治方法研究进展[J]. 中国农学通报, 2013, 29(3): 190-195.Wen Xiaohong, Xie Mingjie, Jiang Jian, et al. Advances in research on control method of rice blast [J]. Chinese Agricultural Science Bulletin, 2013, 29(3): 190-195.
[2] 虞玲锦, 张国良, 丁秀文, 等. 水稻抗白叶枯病基因及其应用研究进展[J]. 植物生理学报, 2012, 48(3): 223-231.Yu Lingjin, Zhang Guoliang, Ding Xiuwen, et al. Progress in identification and application of resistance genes to bacterial blight [J]. Plant Physiology Journal, 2012, 48(3): 223-231.
[3] 伏震, 袁兆恩. 水稻细菌性褐条病识别与防治[J]. 农技服务, 2007, 24(4): 75.
[4] 丁麟. 基于文献计量的水稻三种主要病害研究水平的国际比较与实证分析[D]. 北京: 中国农业科学院, 2013.Ding Lin. International comparison and real analysis on research level of three major rice diseases based on the bibliometric study measured [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
[5] 黄华毅, 马晓航, 扈丽丽, 等. Fast R-CNN深度学习和无人机遥感相结合在松材线虫病监测中的初步应用研究[J]. 环境昆虫学报, 2021, 43(5): 220-228.Huang Huayi, Ma Xiaohang, Hu Lili, et al. The preliminary application of the combination of Fast R-CNN deep learning and UAV remote sensing in the monitoring of pine wilt disease [J]. Journal of Environmental Entomology, 2021, 43(5): 220-228.
[6] 朱红春, 李旭, 孟炀, 等. 基于Faster R-CNN网络的茶叶嫩芽检测[J]. 农业机械学报, 2022, 53(5): 217-224.
Zhu Hongchun, Li Xu, Meng Yang. Tea bud detection based on faster R-CNN network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 217-224.
[7] Patel I, Patel S. An optimized deep learning model for flower classification using NAS-FPN and Faster R-CNN [J]. International Journal of Scientific & Technology Research, 2020, 9(3): 5308-5318.
[8] 李春明, 逯杉婷, 远松灵, 等. 基于Faster R-CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[9] Lee H S, Shin B S. Potato detection and segmentation based on mask R-CNN [J]. Journal of Biosystems Engineering, 2020, 45: 233-238.
[10] 马志艳, 张徐康, 杨光友. 基于改进Mask R-CNN的水稻茎秆杂质分割方法研究[J]. 中国农机化学报, 2021, 42(6): 145-150.
Ma Zhiyan, Zhang Xukang, Yang Guangyou. Research on segmentation method of rice stem impurities based on improved Mask R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 145-150.
[11] 王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 156-163.
[12] 付中正, 何潇, 方逵, 等. 基于改进SSD网络的西兰花叶片检测研究[J]. 中国农机化学报, 2020, 41(4): 92-97.
Fu Zhongzheng, He Xiao, Fang Kui, et al. Study on the detection of broccoli leaves based on the improved SSD network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(4): 92-97.
[13] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[14] 闫建伟, 赵源, 张乐伟, 等. 基于残差网络的自然环境中刺梨果实的识别[J]. 中国农机化学报, 2020, 41(10): 191-196.
Yan Jianwei, Zhao Yuan, Zhang Lewei, et al. Recognition of Rosa roxbunghii fruit in natural environment based on residual network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10): 191-196.
[15] 苏斐, 张泽旭, 赵妍平, 等. 基于轻量化YOLO-v3的绿熟期番茄检测方法[J]. 中国农机化学报, 2022, 43(3): 132-137.
Su Fei, Zhang Zexu, Zhao Yanping, et al. Detection of mature green tomato based on lightweight YOLO-v3 [J].Journal of Chinese Agricultural Mechanization, 2022, 43(3): 132-137.
[16] Richey B, Shirvaikar M V. Deep learning based realtime detection of Northern Corn Leaf Blight crop disease using YoloV4 [C]. RealTime Image Processing and Deep Learning 2021. SPIE, 2021, 11736: 39-45.
[17] 吕石磊, 卢思华, 李震, 等. 基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法[J]. 农业工程学报, 2019, 35(17): 205-214.
Lü Shilei, Lu Sihua, Li Zhen, et al. Orange recognition method using improved YOLOv3-LITE lightweight neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 205-214.
[18] 曹跃腾, 朱学岩, 赵燕东, 等. 基于改进ResNet的植物叶片病虫害识别[J]. 中国农机化学报, 2021, 42(12): 175-181.
Cao Yueteng, Zhu Xueyan, Zhao Yandong, et al. Recognition of plant leaf diseases, insect, and pests based on improved ResNet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 175-181.
[19] 鲍文霞, 吴德钊, 胡根生, 等. 基于轻量型残差网络的自然场景水稻害虫识别[J]. 农业工程学报, 2021, 37(16): 145-152.
Bao Wenxia, Wu Dezhao, Hu Gensheng, et al. Rice pest identification in natural scene based on lightweight residual network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 145-152.
[20] 孙俊, 何小飞, 谭文军, 等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165.Sun Jun, He Xiaofei, Tan Wenjun, et al. Recognition of crop seedling and weed recognition based on dilated convolution and globalpooling in CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 159-165.
[21] Ruder S. An overview of gradient descent optimization algorithms [J]. arXiv Preprint arXiv: 1609.04747, 2016.
[22] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|