English

中国农机化学报

中国农机化学报 ›› 2023, Vol. 44 ›› Issue (9): 183-189.DOI: 10.13733/j.jcam.issn.2095-5553.2023.09.026

• 农业智能化研究 • 上一篇    下一篇

砂糖橘采摘机器人分拣机构设计

侯义锋1, 2,钱俊1, 2,王梁2,贺杰2,闭耀锋2   

  1. 1. 广西民族大学电子信息学院,南宁市,530006; 
    2. 梧州学院广西机器视觉与智能控制重点实验室,广西梧州,543002
  • 出版日期:2023-09-15 发布日期:2023-10-07
  • 基金资助:
    国家自然科学基金项目(61961036);梧州学院校级科研青年项目(2020C011);梧州市科技开发项目(202202039)

Design of sorting mechanism of the clementine picking robots

Hou Yifeng1, 2, Qian Jun1, 2, Wang Liang2, He Jie2, Bi Yaofeng2   

  • Online:2023-09-15 Published:2023-10-07

摘要: 目前我国砂糖橘分拣过程中存在果实分类大小差异较大、分拣效率不高、人力成本大、自动化水平低等问题,以自动分拣成熟砂糖橘果实为研究对象,设计一款基于机器视觉技术的成熟砂糖橘果实目标识别、检测与分拣的装置。该装置由单片机模块、视觉识别模块、步进电机驱动模块、舵机模块、人机交互模块、液晶显示模块组成构成。首先通过机器视觉模块OpenMV获取果实的彩色图像,将其进行二值化处理;其次采用OpenMV IDE软件中的阈值编辑器设置代表成熟砂糖橘果实为橙黄色的LAB数值,单片机通过计算比较可判断砂糖橘果实的颜色是否是橙黄色;最后通过砂糖橘果实的像素和果实直径的关系,计算出成熟砂糖橘果实的直径。测试表明:该装置具有自动识别目标果实的颜色、大小和自动分拣归类的功能,当分拣速率设定为120个/min时,测量的果实直径的误差小于1.6mm,精度达到96.19%,对果实的分类分拣准确率达到95.4%,对不合格果实检测率达到97.2%。

关键词: 砂糖橘, 采摘机械人, 机器视觉, 步进电机, 分拣系统, 收获机械

Abstract: There are some problems in sorting clementine in our country, such as great difference in fruit size, low sorting efficiency, high manpower cost and low automation level. In order to solve the automatic sorting mature clementine, this paper introduces a machine which uses machine vision technology to identify, detect and sort mature clementine. The machine is composed of MCU module, vision recognition module, Stepper Motor Drive Module, actuator module, humancomputer interaction module, LCD module. Firstly, the machine vision module OpenMV is used to get the color image of the fruit, and the image is binarized. Secondly, the threshold editor in the OpenMV IDE software is used to set the LAB value representing the orange color of the mature sugar orange fruit. The SCM can judge whether the color of the sugar orange fruit is orange through calculation and comparison. Finally, the diameter of clementine is calculated by the relationship between the pixel and the diameter. The results show that the device can automatically identify the color, size and sorting of the target fruit. When the sorting rate is set at 120 fruits per minute, the error of the fruit diameter is less than 1.6 mm, the accuracy is 96.19%, the accuracy of classification and sorting is 95.4%, and the detection rate of unqualified fruits is 97.2%.

Key words: clementine, picking robot, machine vision, stepper motor: sorting system, harvest machinery

中图分类号: