[ 1 ] 乔宇, 潘思轶, 徐晓云, 等. 电子鼻检测不同品种和加工类型的柑橘汁[J]. 农业工程学报, 2011, 27(12): 364-368.
Qiao Yu, Pan Siyi, Xu Xiaoyun, et al. Detection of different variety and processing type of Citrus juices using electronic nose [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 364-368.
[ 2 ] 田燕龙, 王毅, 王箫, 等. 近红外光谱技术在微生物检测中的应用进展[J]. 光谱学与光谱分析, 2022, 42(1): 9-14.
Tian Yanlong, Wang Yi, Wang Xiao, et al. Advances in detection of microorganisms using near‑infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 9-14.
[ 3 ] Cortés V, Blasco J, Aleixos N, et al. Monitoring strategies for quality control of agricultural products using visible and near‑infrared spectroscopy: A review [J]. Trends in Food Science & Technology, 2019, 85: 138-148.
[ 4 ] Bruckner M, Pichler G, Urlesberger B. NIRS in the fetal to neonatal transition and immediate postnatal period[J]. Seminars in Fetal and Neonatal Medicine, 2020, 25(2):101079.
[ 5 ] Martelo‑Vidal M J, Vázquez M, Determination of polyphenolic compounds of red wines by UV—VIS—NIR spectroscopy and chemometrics tools [J]. Food Chemistry, 2014, 158: 28-34.
[ 6 ] 陈志莉, 尹文琦, 刘洪涛, 等. 可见—近红外光谱技术监测土壤石油烃污染研究进展[J]. 光谱学与光谱分析, 2017, 37(6): 1723-1727.
Chen Zhili, Yin Wenqi, Liu Hongtao, et al. Review of monitoring petroleum‑hydrocarbon contaminated soils with visible and near‑infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2017, 37(6): 1723-1727.
[ 7 ] Yuan L, Mao F, Huang G, et al. Models fused with successive CARS—PLS for measurement of the soluble solids content of Chinese bayberry by Vis—NIRS technology [J]. Postharvest Biology and Technology, 2020, 169: 111308.
[ 8 ] 高升, 徐建华. 基于近红外光谱的红提内部品质无损检测研究[J]. 食品工业科技, 2022, 43(22): 7-14.
[ 9 ] 陈玥瑶, 夏静静, 韦芸, 等. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. 分析化学, 2023, 51(3): 454-462.
[10] 刘坤, 王典, 荣梦学. 基于半监督生成对抗网络X光图像分类算法[J]. 光学学报, 2019, 39(8): 117-125.
Liu Kun, Wang Dian, Rong Mengxue. X‑Rat image classification algorithm based on semi‑supervised generative adversarial networks [J]. Acta Optica Sinica, 2019, 39(8): 117-125.
[11] 李就好, 林乐坚, 田凯, 等. 改进Faster R—CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185.
Li Jiuhao, Lin Lejian, Tian Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R—CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185.
[12] Rong D, Wang H, Ying Y, et al. Peach variety detection using VIS—NIR spectroscopy and deep learning [J]. Computers and Electronics in Agriculture, 2020, 175: 105553.
[13] Tian S, Wang S, Xu H. Early detection of freezing damage in oranges by online ViS/NIR transmission coupled with diameter correction method and deep 1D—CNN [J]. Computers and Electronics in Agriculture, 2022, 193: 106638.
[14] Brahim B, Ginés M G, Sajad S, et al. Convolutional neural networks for estimating the ripening state of fuji apples using visible and near‑infrared spectroscopy [J]. Food and Bioprocess Technology, 2022, 15(10): 2226-2236.
[15] Yang J, Wang J, Lu G, et al. TeaNet: Deep learning on Near‑Infrared Spectroscopy (NIR) data for the assurance of tea quality [J]. Computers and Electronics in Agriculture, 2021, 190: 106431.
[16] Zhang G, Si Y, Wang D, et al. Automated detection of myocardial infarction using a gramian angular field and principal component analysis network [J]. IEEE Access, 2019, 7: 171570-171583.
[17] Liu S, Wang S, Hu C, et al. Determination of alcohols‑diesel oil by near infrared spectroscopy based on gramian angular field image coding and deep learning [J]. Fuel, 2022, 309: 122121.
[18] 聂继云, 李志霞, 李海飞, 等. 苹果理化品质评价指标研究[J]. 中国农业科学, 2012, 45(14): 2895-2903.
[19] 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2): 349-369.
[20] Qin Y, Liu X, Zhang F, et al. Improved deep residual shrinkage network on near infrared spectroscopy for tobacco qualitative analysis [J]. Infrared Physics & Technology, 2023, 129: 104575.
[21] 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9): 2800-2806.
Diwu Pengyao, Bian Xihui, Wang Zifang, et al. Study on the selection of spectral preprocessing methods [J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2800-2806.
[22] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|