[ 1 ] 黄家雄, 李维锐, 夏兵, 等. 云南咖啡产业高质量发展对策初探[J]. 热带农业科技, 2022, 45(3): 21-29.
Huang Jiaxiong,Li Weirui,Xia Bing,et al. Strategies on how to promote the development of coffee industry with high quality in Yunnan Province [J]. Tropical Agricultural Science & Technology, 2022, 45(3): 21-29.
[ 2 ] 李爽,丁百仁. 新时代保山市咖啡产业发展现状与策略[J]. 林业调查规划, 2022, 47(4): 115-119.
Li Shuang, Ding Bairen. Development status and countermeasures of coffee industry in Baoshan City in the new era [J]. Forest Inventory and Planning, 2022, 47(4): 115-119.
[ 3 ] 张秀花, 静茂凯, 袁永伟, 等. 基于改进 YOLOv3—Tiny 的番茄苗分级检测[J]. 农业工程学报, 2022, 38(1): 221-229.
Zhang Xiuhua, Jing Maokai, Yuan Yongwei, et al. Tomato seedling classification detection using improved YOLOv3—Tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 221-229.
[ 4 ] 万龙, 庞宇杰, 张若宇, 等. 机采籽棉收购环节含杂率快速检测系统研制[J]. 农业工程学报, 2021, 37(6): 182-189.
Wan Long, Pang Yujie, Zhang Ruoyu, et al. Rapid measurement system for the impurity rate of machine‑picked seed cotton in acquisition [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 182-189.
[ 5 ] Pizzaia J P L, Salcides I R, Almeida G M, et al. Arabica coffee samples classification using a multilayer perceptron neural network [C]. 2018 13th IEEE International Conference on Industry Applications (INDUSCON). IEEE, 2018: 80-84.
[ 6 ] Subramanian K S, Vairachilai S, Gebremichael T. Features extraction and dataset preparation for grading of ethiopian coffee beans using image analysis techniques [C]. Information and Communication Technology for Intelligent Systems: Proceedings of ICTIS 2018, Volume 1. Springer Singapore, 2019: 287-298.
[ 7 ] Waliyansyah R R, Hasbullah U H A. Comparison of tree method, support vector machine, Naïve Bayes, and logistic regression on coffee bean image [J]. EMITTER International Journal of Engineering Technology, 2021, 9(1): 126-136.
[ 8 ] 赵玉清, 杨慧丽, 张悦, 等. 基于特征组合与SVM的小粒种咖啡缺陷生豆检测[J]. 农业工程学报, 2022, 38 (14): 295-302.
Zhao Yuqing, Yang Huili, Zhang Yue, et al. Detection of defective Arabica green coffee beans based on feature combination and SVM [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(14): 295-302.
[ 9 ] 常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12.
Chang Xilong, Liang Kun, Li Wentao. A review of the development of deep learning optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12.
[10] 张红涛, 朱洋, 谭联, 等. 利用机器视觉识别麦粒内米象发育规律与龄期[J]. 农业工程学报, 2020, 36(2): 201-208.
Zhang Hongtao, Zhu Yang, Tan Lian, et al. Identifying larval development of Sitophilus oryzae in wheat grain using computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 201-208.
[11] 赵露露, 邓寒冰, 周云成, 等.基于自生成标签的玉米苗期图像实例分割[J]. 农业工程学报, 2023, 39(11): 201-211.
Zhao Lulu, Deng Hanbing, Zhou Yuncheng, et al. Instance segmemtation model of maize seeding images based on automatic generated labels [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(11): 201-211.
[12] Chang S J, Huang C Y. Deep learning model for the inspection of coffee bean defects [J]. Applied Sciences, 2021, 11(17): 8226.
[13] Chang S J, Liu K H. Multiscale defect extraction neural network for green coffee bean defects detection [J]. IEEE Access, 2024.
[14] 李颀, 强华. 基于双目视觉与深度学习的番茄本体特征检测系统[J]. 南方农业学报, 2020, 51(1): 237-244.
Li Qi, Qiang Hua. Tomato ontology feature detection system based on binocular vision and deep learning [J]. Journal of Southern Agriculture, 2020, 51(1): 237-244.
[15] Wang Q, Wu B, Zhu P, et al. ECA—Net: Efficient channel attention for deep convolutional neural networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[16] Hu J, Shen L, Sun G. Squeeze‑and‑excitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[17] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[18] 周春欣, 霍怡之, 杜有海, 等. 基于改进的RetinaNet大豆外观品质无损检测[J]. 中国粮油学报, 2024, 39(9): 172-180.
Zhou Chunxin, Huo Yizhi, Du Youhai, et al. Non‑destructive detection of soybean appearance quality based on improved RetinaNet [J]. Journal of the Chinese Cereals and Oils Association, 2024, 39(9): 172-180.
[19] 刘莫尘, 褚镇源, 崔明诗, 等. 基于改进YOLO v8—Pose的红熟期草莓识别和果柄关键点检测[J/OL]. 农业机械学报, 1-12 [2024-04-10].
Liu Mochen, Chu Zhenyuan, Cui Mingshi, et al. Red ripe strawberry recognition and stem detection based on improved YOLO v8—Pose [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 1-12 [2024-04-10].
[20] 张成尧, 张艳诚, 张宇乾, 等. 基于YOLOv5的咖啡瑕疵豆检测方法[J]. 食品与机械, 2023, 39(2): 50-56, 75.
Zhang Chengyao, Zhang Yancheng, Zhang Yuqian, et al. Detection method of defective coffee beans based on YOLOv5 [J]. Food & Machinery, 2023, 39(2): 50-56, 75.
[21] 纪元浩, 许金普, 严蓓蓓, 等. 基于改进ResNet50模型的咖啡生豆质量和缺陷检测方法 [J]. 中国农机化学报, 2024, 45(4): 237-243.
Ji Yuanhao, Xu Jinpu, Yan Beibei, et al. A method for detecting quality and defects in raw coffee beans based on improved ResNet50 model [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 237-243.
[22] 王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程, 2021, 47(8): 1-13.
Wang Jun, Feng Suncheng, Cheng Yong. Survey of research on lightweight neural network structures for deep learning [J]. Computer Engineering, 2021, 47(8): 1-13.
[23] 叶建华, 唐辉, 罗奋翔, 等. 基于改进MobileNet的咖啡豆缺陷检测[J]. 福建工程学院学报, 2023, 21(3): 257-263.
Ye Jianhua, Tang Hui, Luo Fenxiang, et al. Coffee bean defect detection based on improved MobileNet [J]. Journal of Fujian University of Technology, 2023, 21(3): 257-263.
[24] 王志强, 于雪莹, 杨晓婧, 等. 基于WGAN和MCA—MobileNet的番茄叶片病害识别 [J]. 农业机械学报, 2023, 54(5): 244-252.
Wang Zhiqiang, Yu Xueying, Yang Xiaojing, et al. Tomato leaf diseases recognition based on WGAN and MCA—MobileNet [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (5): 244-252.
[25] 王飞云, 吕程序, 吴金灿, 等. 基于Shuffle—Net的发芽马铃薯无损检测方法 [J]. 农业机械学报, 2022, 53(S1): 309-315.
Wang Feiyun, Lü Chengxu, Wu Jincan, et al. Non‑destructive detection of sprouting potatoes based on Shuffle—Net [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 309-315.
[26] 张立杰, 周舒骅, 李娜, 等. 基于改进SSD卷积神经网络的苹果定位与分级方法 [J]. 农业机械学报, 2023, 54 (6): 223-232.
Zhang Lijie, Zhou Shuhua, Li Na, et al. Apple location and classification based on improved SSD convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 223-232.
[27] 张文蓉, 王朋, 钟鸣, 等. 基于视觉的茭白自动分级包装设备研究与开发 [J]. 中国农机化学报, 2021, 42 (12): 114-120.
Zhang Wenrong, Wang Peng, Zhong Ming, et al. Research and development on the automatic sorting and packing equipment of Zizania based on vision [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 114-120.
[28] Chopra H, Singh H, Bamrah M S, et al. Efficient fruit grading system using spectrophotometry and machine learning approaches [J]. IEEE Sensors Journal, 2021, 21(14): 16162-16169.
[29] DB53/T 149.7—2023, 小粒种咖啡第7部分: 生豆分级[S].
[30] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[31] Frate D F, Pacifici F, Schiavon G, et al. Use of neural networks for automatic classification from high‑resolution images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 800-809.
[32] Xu P, Yang R, Zeng T, et al. Varietal classification of maize seeds using computer vision and machine learning techniques [J]. Journal of Food Process Engineering, 2021, 44(11): e13846.
|