[ 1 ] Pallathadka H, Ravipati P, Sajja G S, et al. Application of machine learning techniques in rice leaf disease detection [J]. Materials Today: Proceedings, 2022, 51: 2277-2280.
[ 2 ] Jhatial M J, Shaikh R A, Shaikh N A, et al. Deep learning‑based rice leaf diseases detection using YOLOv5 [J]. Sukkur IBA Journal of Computing and Mathematical Sciences, 2022, 6(1): 49-61.
[ 3 ] Pothen M E, Pai M L. Detection of rice leaf diseases using image processing [C]. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2020: 424-430.
[ 4 ] 朱素素. 基于高光谱成像技术的水稻主要病害早期检测及其模型构建[D]. 杭州: 浙江大学, 2022.
[ 5 ] 温鑫. 基于卷积神经网络的水稻叶片病害识别[D]. 哈尔滨: 东北农业大学, 2021.
[ 6 ] Chen J, Zhang D, Nanehkaran Y A, et al. Detection of rice plant diseases based on deep transfer learning [J]. Journal of the Science of Food and Agriculture, 2020, 100(7): 3246-3256.
[ 7 ] Girshick R. Fast R—CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[ 8 ] Fan Q, Zhuo W, Tang C K, et al. Few‑shot object detection with attention‑RPN and multi‑relation detector [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4013-4022.
[ 9 ] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation [J]. arXiv preprint arXiv: 1706. 05587, 2017.
[10] Wu Z, Shen C, Van Den Hengel A. Wider or deeper: Revisiting the resnet model for visual recognition [J]. Pattern Recognition, 2019, 90: 119-133.
[11] 孙俊, 何小飞, 谭文军, 等. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11) : 159-165.
Sun Jun, He Xiaofei, Tan Wenjun, et al. A convolutional neural network combining dilated convolution and global pooling for identifying crop seedlings and weeds [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11) : 159-165.
[12] Sullivan A, Lu X. ASPP: A new family of oncogenes and tumour suppressor genes [J]. British Journal of Cancer, 2007, 96(2): 196-200.
[13] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[14] 燕红文, 刘振宇, 崔清亮, 等. 基于特征金字塔注意力与深度卷积网络的多目标生猪检测[J]. 农业工程学报, 2020, 36(11): 193-202.
Yan Hongwen, Liu Zhenyu, Cui Qingliang, et al, Multi‑target detection based on feature pyramid attention and deep convolutional networks for pigs [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 193-202.
[15] Buckland M, Gey F. The relationship between recall and precision [J]. Journal of the American Society for Information Science, 1994, 45(1): 12-19.
|