[1] 吕春晶, 章秋平, 刘宁,等. 杏果核物理特性与其主要化学组分的相关性分析[J].果树学报, 2021, 38(10): 1717-1724.
Lü Chunjing, Zhang Qiuping, Liu Ning, et al. Correlations between physical properties and major chemical components of shells in apricot [J]. Journal of Fruit Science, 2021,38(10):1717-1724.
[2] 散鋆龙, 杨会民, 王学农,等. 振动方式和频率对杏树振动采收响应的影响[J]. 农业工程学报, 2018, 34(8): 10-17.
San Yunlong, Yang Huimin, Wang Xuenong, et al. Effects of vibration mode and frequency on vibration harvesting of apricot trees [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 10-17.
[3] 闫彬, 樊攀, 王美茸,等. 基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报, 2022,53(9):28-38,59.
Yan Bin, Fan Pan, Wang Meirong,et al. Realtime apple picking pattern recognition for picking robot based on improved YOLOv5m [J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):28-38,59.
[4] Lin G, Tang Y, Zou X, et al. Fruit detection in natural environment using partial shape matching and probabilistic Hough transform [J]. Precision Agriculture, 2020, 21: 160-177.
[5] Liu T H, Ehsani R, Toudeshki A, et al. Detection of citrus fruit and tree trunks in natural environments using a multielliptical boundary model [J]. Computers in Industry, 2018, 99: 9-16.
[6] 廖崴, 郑立华, 李民赞,等. 基于随机森林算法的自然光照条件下绿色苹果识别[J]. 农业机械学报, 2017, 48(S1):86-91.
Liao Wei, Zhen Lihua, Li Minzan, et al. Green apple recognition in natural illumination based on random forest algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(S1):86-91.
[7] Wan S, Goudos S. Faster R—CNN for multiclass fruit detection using a robotic vision system [J]. Computer Networks, 2020, 168: 107036.
[8] 彭红星, 黄博, 邵园园,等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018,34(16):155-62.
Peng Hongxing, Huang Bo, Shao Yuanyuan,et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162.
[9] 赵辉, 乔艳军, 王红君,等. 基于改进YOLOv3的果园复杂环境下苹果果实识别[J]. 农业工程学报, 2021, 37(16):127-35.
Zhao Hui, Qiao Yanjun, Wang Hongjun,et al. Apple fruit recognition in complex orchard environment based on improved YOLOv3 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 127-135.
[10] 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报,2021,32(2):349-369.
Zhao Kailin, Jin Xiaolong, Wang Yuanzhuo. Survey on fewshot learning [J]. Journal of Software, 2021, 32(2):349-369.
[11] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[12] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[13] 彭炫, 周建平, 许燕,等. 改进YOLOv5识别复杂环境下棉花顶芽[J]. 农业工程学报, 2023, 39(16): 191-197.
Peng Xuan, Zhou Jianping, Xu Yan,et al. Cotton top bud recognition method based on YOLOv5-CPP in complex environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 191-197.
[14] 彭书博, 陈兵旗, 李景彬,等. 基于改进YOLOv7的果园行间导航线检测[J]. 农业工程学报, 2023,39(16)131-138.
Peng Shubo, Chen Bingqi, Li Jingbin, et al. Detection of the navigation line between lines in orchard using improved YOLOv7[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 131-138.
[15] Li X, Wang W, Wu L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection [J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-12.
[16] Mehta S, Rastegari M. MobileViT: Lightweight, generalpurpose, and mobilefriendly vision transformer [J]. arXiv preprint arXiv:211002178, 2021.
[17] Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[18] Zheng Z, Wang P, Liu W, et al. DistanceIoU loss: Faster and better learning for bounding box regression [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[19] Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IoU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
[20] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression [J]. arXiv preprint arXiv:220512740, 2022.
[21] Tong Z, Chen Y, Xu Z, et al. WiseIoU: Bounding box regression loss with dynamic focusing mechanism [J].arXiv preprint arXiv:230110051, 2023.
|