English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (3): 246-252.DOI: 10.13733/j.jcam.issn.2095-5553.2025.03.036

• 农业智能化研究 • 上一篇    下一篇

基于改进YOLOv8的复杂果园环境下杏果的目标检测

买买提·沙吾提1, 2, 3, 阿尔庆·西力克1   

  1. (1. 新疆大学地理与遥感科学学院,乌鲁木齐市,830046; 2. 新疆绿洲生态重点实验室,乌鲁木齐市, 830046;  3. 智慧城市与环境建模自治区普通高校重点实验室,乌鲁木齐市,830046)
  • 出版日期:2025-03-15 发布日期:2025-03-13
  • 基金资助:
    新疆自然科学计划(自然科学基金)联合基金项目(2021D01C055)

Target detection of apricots in complex orchard environments based on improved YOLOv8

Mamat Sawut1, 2, 3, Aerqing Xilike1    

  1. (1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi, 830046, China;
    2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China; 3. Key Laboratory of 
    Smart City and Environment Modelling of Higher Education Institute, Xinjiang University, Urumqi, 830046, China)
  • Online:2025-03-15 Published:2025-03-13

摘要:

为解决复杂果园环境中,因遮挡、重叠导致杏果识别误检率较高、检测精度较低的问题,提出一种基于改进YOLOv8n网络模型的杏果检测算法。该算法采用轻量化模块MobileViT—XS替换原有骨干网络,保证特征提取能力,同时降低模型的参数量与计算量,并且将原始的损失函数CIoU替换为WIoUv3,动态优化损失权重提高模型的检测精度。为验证改进方法的有效性,选取6种主流的目标检测模型、5种骨干网络的轻量化改进模型以及5种不同的损失函数进行对比试验。结果表明,改进后的模型相比原始模型在F1、平均精度均值mAP上提升1.25%、1.48%,参数量、浮点运算量、模型大小分别降低28.06%、0.1 G、1.48 MB。改进后的算法能够精准、快速地在复杂的果园环境中识别出杏果。

关键词: 杏果, 目标检测, 复杂果园环境, 轻量化网络, YOLOv8算法, 损失函数

Abstract:

 This study addresses the challenges of high false detection rates and low accuracy in apricot recognition within complex orchard environments due to occlusion and overlap. An apricot detection algorithm based on an improved YOLOv8n network model is proposed. The algorithm replaces the original backbone network with the lightweight MobileViT—XS module, maintaining feature extraction capabilities while reducing the number of parameters and computational demands. The original loss function CIoU is substituted with WIoUv3, which dynamically optimizes loss weights and improves detection precision. Comparative experiments are conducted using six mainstream target detection models, five lightweight improved models with backbone networks, and five different loss functions. The results show that the improved model increases the F1 score and mAP by 1.25% and 1.48%, respectively, and reduces parameters, FLOPs, and model size by 28.06%, 0.1 G and 1.48 MB. This improved algorithm can accurately and quickly detect apricots in complex orchard environments.

Key words: apricots, target detection, complex orchard environment, lightweight network, YOLOv8 algorithm, loss function

中图分类号: