[1] 张晓慧. 草莓病害研究进展[J]. 安徽农学通报, 2018, 24(18): 52-57.
[2] 2023—2029年中国草莓种植与深加工行业市场现状调查及投资方向研究报告[EB/OL]. https://wwwchyxxcom/research/1135804html?bd_vid=8237899329342221593, 2023-08-22.
[3] 王卓, 王健, 王枭雄,等. 基于改进YOLOv4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302.
Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight realtime apple detection method based on improved YOLOv4[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(8):294-302.
[4] 闫彬, 樊攀, 王美茸, 等. 基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别[J]. 农业机械学报, 2022, 53(9): 28-38,59.
Yan Bin, Fan Pan, Wang Meirong, et al. Realtime apple picking pattern recognition for picking robot based on improved YOLOv5m [J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):28-38,59.
[5] 宋怀波, 王亚男, 王云飞,等. 基于YOLOv5s的自然场景油茶果识别方法[J]. 农业机械学报, 2022, 53(7): 234-242.
Song Huaibo, Wang Yanan, Wang Yunfei, et al. Camellia oleifera fruit detection in natural scene based on YOLOv5s [J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):234-242.
[6] Bargoti S, Underwood J. Deep fruit detection in orchards [C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017: 3626-3633.
[7] 闫建伟, 赵源, 张乐伟, 等. 改进Faster R—CNN自然环境下识别刺梨果实[J]. 农业工程学报, 2019, 35(18): 143-150.
Yan Jianwei, Zhao Yuan, Zhang Lewei, et al. Recognition of rosa roxbunghii in natural environment based on improved Faster R—CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 143-150.
[8] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. Computer VisionECCV 2016, 2016: 21-37.
[9] 周桂红, 马帅, 梁芳芳. 基于改进YOLOv4模型的全景图像苹果识别[J]. 农业工程学报, 2022, 38(21): 159-168.
Zhou Guihong, Ma Shuai, Liang Fangfang. Recognition of the apple in panoramic images based on improved YOLOv4model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(21): 159-168.
[10] Fan Y, Zhang S, Feng K, et al. Strawberry maturity recognition algorithm combining dark channel enhancement and YOLOv5[J]. Sensors, 2022, 22(2): 419.
[11] Fu L S, Feng Y L, Wu J Z, et al. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3—tiny model [J]. Precision Agriculture, 2021, 22(3): 754-776.
[12] 孙俊, 陈义德, 周鑫, 等. 快速精准识别棚内草莓的改进YOLOv4—Tiny模型[J]. 农业工程学报, 2022, 38(18): 195-203.
Sun Jun, Chen Yide, Zhou Xin, et al. Fast and accurate recognition of the strawberries in greenhouse based on improved YOLOv4—Tiny model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 195-203.
[13] 陈仁凡, 谢知, 林晨. 基于YOLO—ODM的温室草莓成熟度的快速检测[J]. 华中农业大学学报, 2023, 42(4): 262-269.
[14] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90.
[15] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1577-1586.
[16] Wang Q, Wu B, Zhu P, et al. ECA—Net: Efficient channel attention for deep convolutional neural networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11531-11539.
[17] Yang L, Zhang RY, Li L, et al. SimAM: A simple, parameterfree attention module for convolutional neural networks [C]. Proceedings of the 38th International Conference on Machine Learning, 2021: 11863-11874.
|